Jiahe Chen

 \boxdot jc
3472@cornell.edu
 \checkmark (626) 684-6144 ${\mathscr O}$ ericland.github.io in jiahe-chen
-67b19585 ${\tt O}$ Ericland

RESEARCH PROFILE

I am a recent graduate of Cornell University with a PhD in Robotics. My research focuses on leveraging swarms of robots with minimal onboard capabilities combined with advanced mathematical models to develop scalable error-tolerant multi-robot systems capable of building large-scale complex structures. **Research Interest**: Multi-Agent Systems, Optimal Transport Theory, Machine Learning **Tools**: Robot Operating System (ROS), Linux, AutoCAD, Altium, Cadence, LabVIEW **Programming Languages:** Python, C, Verilog, MATLAB, Mathematica

EDUCATION

Ph.D. in Robotics, Cornell University, GPA 3.82/4.0	2019 - 2024
M.S. in Electrical Engineering, University of Pennsylvania, GPA 3.97/4.0	2017 - 2019
B.S. in Engineering Physics , Queen's University (Canada), First Class Honours	2013 - 2017

AWARDS

Jacobs Fellowship at Cornell (Aug 2020 & Aug 2021), Merit-Based Fellowship at Cornell (Aug 2019), Outstanding Academic Award Honorable Mention at UPenn (May 2019), Dean's Scholar at Queen's (May 2015 & May 2017), Excellence Scholarship at Queen's (Sep 2013)

PROJECTS

Collective Robotic Terrain Transformation

- Advised by Prof. Kirstin Petersen, Cornell University
- Developed a distributed multi-robot system to form large-scale continuous terrains with complex geometries.
- Tools: Python, Numpy, Scipy, OpenCV, MATLAB

Physics Simulation of Robotic Construction

Advised by Prof. Kirstin Petersen, Cornell University

- Developed a physics simulator for multi-robot construction with granular material.
- Built a reinforcement learning test environment and discovered optimal policies for diverse construction tasks.
- Tools: Python, OpenAI Gymnasium, Stable Baselines3, Pymunk, Pygame, Pandas, PyTorch, Google Cloud

Collective Robotic Construction

Advised by Prof. Kirstin Petersen, Prof. Nils Napp, and Prof. Hadas Kress-Gazit, Cornell University

- Developed a distributed multi-robot system that can reliably build large-scale user-defined 3D structures.

- Tools: Python, NetworkX, Numpy, Scipy, OpenCV, statsmodels

Price Prediction of Used Cars

ORIE 5741 Learning with Big Messy Data, Cornell University

Discovered the best machine learning models for predicting used car pricing based on the market dataset.
Tools: Python, Pandas, scikit-learn, statsmodels, Numpy, Scipy

Multi-Robot Wireless Charging System

Advised by Prof. Kirstin Petersen, Cornell University

- Designed a low-cost programmable wireless power transfer system that can quickly charge multiple robots.

- Tools: COMSOL Multiphysics, AutoCAD, 3D Printing, EAGLE, Arduino, MATLAB

Implantable Chips for Brain-Machine Interface Applications

- Advised by Prof. Firooz Aflatouni and Prof. Jan Van der Spiegel, University of Pennsylvania
- Designed ultra-low-power analog and mixed-signal chips for neurostimulation and neural signal processing.

- Tools: Cadence, MATLAB, Mathematica,

Instrumentation System for a Proton Accelerator

Advised by Prof. Mark Daymond, Reactor Materials Testing Laboratory, Queen's University

Designed an instrumentation system to measure the amount of protons delivered from the accelerator accurately.
Tools: LabVIEW, MATLAB, Altium, Arduino

-

Sep 2019 - Jul 2020

Jan 2018 - Jun 2019

May 2016 - Jun 2017

Mar 2022 - Dec 2024

Mar 2023 - Dec 2023

Apr 2020 - Mar 2022

Sep 2021 - Dec 2021