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Chapter 1 Introduction 

 

1.1 Background and Motivation 

Tremendous advances in circuit design techniques and silicon technology make silicon-

based integrated circuits (IC) one of the most powerful platforms for realizing extremely 

complex systems on a small scale. These advances also drive future innovations in IC to 

take place at the system level and become more application-oriented. Benefiting from 

these innovations, electrical engineering has been able to create new modalities for 

interacting with biological systems, what is having an impact on biological sciences like 

no discipline has had before. [1] Neuroscience and neuroengineering pose particularly 

interesting and challenging research problems, such as how to use electronics to record 

and decode weak and noisy neural signals. A Brain-Machine Interface (BMI) which 

creates an artificial direct pathway between the brain and external devices was therefore 

proposed to tackle such kind of problems. [2] With rapid development since 1970s, BMI 

gains broad applications in fundamental neuroscience research, neural disease treatment 

and other high-impact fields. [3] Recently emerging areas of BMI research include 

untethered closed-loop bidirectional BMI system, application of BMI to early detection 

and prevention of neurological disorders, and implantable high-density distributed BMI 

systems. [2] [4] [5] 

Inspired by previous work mentioned before, this thesis focuses on one critical 

component of the BMI system, the neural stimulator. Implantable electrical neural 

stimulator interfaces with neurons through electrodes and delivers low electrical energy 

to artificially excite neurons. One popular type of electrical stimulator is the current-

regulated stimulator, due to its safety and well-controlled stimulation energy. However, 

one major drawback of such type of stimulator is its poor energy efficiency. For 

implantable devices, any waste of energy degrades the usability. Over the past decade, 

numerous circuit and system innovations have been proposed to improve the power 

efficiency of the current-regulated stimulator. [6] [7] [8] However, most of these 

techniques focus on improving the circuit efficiency of the stimulator. In this work, we 

try to solve this problem from the perspective of the biological system. We propose a 

closed-loop neurostimulation system that can automatically find the minimum 

stimulation current that is needed to evoke an action potential from neurons. We can then 

use the found minimum stimulation current to stimulate neurons with the least power 

consumption and safety risk later. Details about the proposed system are described in the 

next section. 
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1.2 Introduction to the Proposed System 

The basic architecture and operational scheme of the proposed closed-loop 

neurostimulation system are shown in Figure 1.1. The operation of the system contains 

two phases: the stimulation phase executed by a digitally controlled stimulator, and the 

detection phase executed by an analog front-end (AFE) and a spike detector. Peripheral 

circuitry, including a stimulation timing generation module (STGM) and a counter, 

coordinates these two phases. The AFE and the stimulator interphase with the tissue 

through a same electrode. Therefore, a closed-loop control system is formed. 

The operational scheme is to perform stimulation and detection sequentially and 

repeatedly, and gradually increase the stimulation current until an action potential is 

observed. As shown in Figure 1.1, the system first initializes the stimulation current 

(IStim) at the minimum value and then starts the first stimulation. After the stimulation 

phase, the system turns the stimulator off and starts the detection phase. The neural signal 

from the tissue gets amplified by the AFE and is then analyzed by the spike detector. If 

the system does not detect any action potential during the detection phase, IStim will 

increase by one least significant bit (LSB) and the system will start another stimulation 

and repeat subsequent tasks. If the system detects an action potential, it will recognize the 

current value of IStim as the minimum needed stimulation current and then stop the 

searching process. 

 

Figure 1.1: Left: Basic architecture of the proposed system. Right: Basic operation flow 

of the proposed system. 

For the timing of the operation, one stimulation-detection process takes 2ms. The 4-bit 

digitally controlled stimulator provides 15 different current amplitudes. Therefore, one 

complete operation (assuming an action potential is detected) takes maximum 30ms. 

In terms of the circuit implementation, the system does not pose extreme requirements for 

the AFE and the spike detector since no complex signal processing like spike 

classification is involved. Also, since the stimulation phase and the detection phase 
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happen sequentially, the stimulation artifact is not severe. This further alleviates the 

requirement for the AFE. However, the system does have rigorous requirements for the 

neural stimulator. Since several stimulations will be performed in a short duration, the 

stimulator needs to have excellent charge-balancing performance. Since we want to know 

the accurate value of delivered current, the stimulator also needs to have accurate control 

over the stimulation current amplitude. All these implementation details will be presented 

in later chapters. 

The system is designed in GlobalFoundries 180nm silicon-on-insulator (SOI) process. 

Four types of transistors are used. Their circuit symbols are shown in Figure 2.1. For this 

work, generally T-body transistors are used for analog circuits and floating-body 

transistors are used for digital circuits. 

 

Figure 1.2: Transistors used in the design. 

 

1.3 Outline of the Thesis 

The thesis is organized as follows: Chapter 2 to Chapter 5 present the design and 

implementation of each block of the system. The sequence follows the signal flow in the 

block diagram: from the AFE to the stimulator and finally the peripheral circuitry. 

Chapter 6 describes the integration and implementation of the system. Chapter 7 is an 

independent chapter. A low-power linear-phase delay filter, which is part of a neural 

spike classification chip, is presented in this chapter. 
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Chapter 2 Analog Front-End 

 

2.1 Introduction to Neural Signal Recording 

The analog front-end (AFE) in a BMI system is an essential block for converting neural 

signals to more processable electrical signals on the chip. The first stage of the AFE is 

normally a neural amplifier which extracts and conditions microvolt to millivolt scale 

signals aroused from weak neural activities. [9] Based on Friis formulas for noise, this 

stage makes dominant contribution to the overall noise of the AFE and thereby should 

have particularly low noise level. [10] The later stages are optional and depend on system 

functions. For our system, the AFE has two stages and the second stage is a 

programmable gain amplifier (PGA), which can be used to further amplify the neural 

signal and adjust the signal amplitude for later signal processing. The conceptual circuit 

diagram of the designed AFE is shown in Figure 2.1. 

 

Figure 2.1: Conceptual circuit diagram of the AFE. 

This chapter describes the design of a general-purpose analog front-end for recording 

action potentials from neurons. The chapter is organized as follows: Section 2.2 presents 

the overall architecture of the AFE. Section 2.3 describes the circuit implementation. 

Section 2.4 shows the performance of the AFE from Cadence simulations. 

 

2.2 AFE Architecture 

The overall circuitry of the designed AFE is shown in Figure 2.2. The neural amplifier 

stage is based on a widely used topology proposed by Harrison et al. and Olsson III et al. 

[11] [12] The topology utilizes capacitive feedback loops to set up the closed-loop gain 

and large MOS pseudo-resistors to set up the DC feedback. The PGA stage is based on 

the same topology but with variable capacitors for gain tuning. All four variable capacitor 

are controlled by digital signals B0~4. 
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Figure 2.2: Architecture of the AFE. 

To analyze the circuit, consider the simplified circuit diagram of each stage shown in 

Figure 2.3. Since in the recording setup, Vin+ of the AFE is connected to the working 

electrode and Vin- is connected to the reference electrode, we can assume that the positive 

input of the single-ended OTA shown in the graph is connected to the signal ground. 

 

Figure 2.3: Simplified circuit diagram of each stage. 

Suppose that the OTA has a voltage gain of Av, the closed-loop gain is then given by: 

𝐺 = −
𝐴𝑣𝑍2𝑠𝐶1

(𝐴𝑣 + 1) + 𝑍2𝑠𝐶1
=

−
𝐴𝑣𝐶1

𝐶1 + 𝐶2 + 𝐴𝑣𝐶2

1 +
1 + 𝐴𝑣

𝑠𝑅(𝐶1 + 𝐶2 + 𝐴𝑣𝐶2)

= −
𝐺𝑀

1 +
𝜔𝐿
𝑠

, 

where GM is the mid-band gain and ωL is the lower cutoff frequency or the high-pass 

corner frequency. Assume that the gain is large, and the following criterion is met, we 

have: 



6 

 

𝐴𝑣𝐶2 ≫ 𝐶1 + 𝐶2 ⟹

{
 

 𝐺𝑀 ≈ −
𝐶1
𝐶2

𝜔𝐿 ≈
1

𝑅𝐶2

. 

We can see that the closed-loop gain is set by the ratio of C1 to C2 and the lower cutoff 

frequency depends on R. Therefore, the resistance of the MOS pseudo-resistor is 

normally very large so that ωL is in Hz range. Another design consideration is that the DC 

gain Av of the OTA must be sufficiently larger than the desired closed-loop gain. 

Otherwise the closed-loop gain of the circuit will have a considerable error. For this 

design, the closed-loop gain of the neural amplifier is 40dB. To have a gain error less 

than 10%, the DC gain of the OTA should be at least 60dB. 

To find the upper cutoff frequency or the low-pass corner frequency, we assume that the 

OTA has a transconductance gm and an extremely high output impedance. The output 

impedance of the circuit is then: 

𝑍𝑜𝑢𝑡 =
1

𝑠𝐶𝐿
||𝑍𝑥, 

𝑍𝑥 =
1 + 𝑠𝐶1𝑍2
𝑔𝑚 + 𝑠𝐶1

. 

Suppose that at higher frequency, the impedance of C2 dominates over R. Also assume 

that C1 is much larger than C2. Then we have: 

𝑍𝑥 ≈
𝐺𝑀

𝑠𝐶1 + 𝑔𝑚
⟹ 𝑍𝑜𝑢𝑡 =

1

𝑠𝐶1 + 𝑔𝑚
𝐺𝑀

+ 𝑠𝐶𝐿

⟹ 𝐴𝑣 = 𝑔𝑚𝑍𝑜𝑢𝑡 =
𝑔𝑚

𝑠𝐶1 + 𝑔𝑚
𝐺𝑀

+ 𝑠𝐶𝐿

. 

Since Av is normally very large, the closed-loop gain can be approximated as follows: 

𝐺 ≈
−1

1
𝑠𝑍2𝐶1

+
1
𝐴𝑣

=
−𝐺𝑀

1 +
𝐺𝑀
𝑔𝑚

(
𝑠𝐶1 + 𝑔𝑚
𝐺𝑀

+ 𝑠𝐶𝐿)
. 

Suppose that GM is large and C1 and CL are comparable. Then we have: 

𝑠𝐶1 + 𝑔𝑚
𝐺𝑀

+ 𝑠𝐶𝐿 ≈ 𝑠𝐶𝐿 ⟹ 𝐺 ≈
−𝐺𝑀

1 +
𝑠𝐺𝑀𝐶𝐿
𝑔𝑚

=
−𝐺𝑀

1 +
𝑠
𝜔𝐻

, 

where ωH is the upper cutoff frequency. Since ωL is normally very small compared with 

ωH, the bandwidth of the neural amplifier is therefore given by: 

𝐵𝑊 ≈ 𝜔𝐻 =
𝑔𝑚
𝐺𝑀𝐶𝐿

=
𝑔𝑚𝐶2
𝐶1𝐶𝐿

. 
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Normally GM and gm are set by other design requirements. Therefore, the bandwidth 

mainly depends on the loading capacitor CL. 

For this design the ratio of C1 to C2 is 100 to realize a closed-loop gain of 40dB. For the 

neural amplifier, we made Cf1 and Cin equal to 100fF and 10pF respectively. For the 

PGA, Cf2 is 50fF and CV1 changes from 0.35pF to 5pF with a tuning step of 0.15pF. The 

capacitive feedback of the neural amplifier has larger capacitance to reduce the effect of 

parasitic capacitors on the closed-loop gain. The capacitance tuning of CV1 enables the 

gain of the AFE to be changed from 0.7kV/V to 10kV/V with a tuning step of 0.3kV/V. 

This wide linear change enables accurate control over the signal amplitude. 

Conventionally, for the PGA, Cf2 is designed as the variable capacitor to realize the 

tunable gain. [13] With such design, the gain of the AFE can hardly be linearly 

controlled. However, for our design, the change of CV1 means the change of loading 

capacitors of the neural amplifier since the input impedance of the PGA is approximately 

the impedance of CV1. Therefore, change of CV1 will ultimately affect the bandwidth of 

the AFE. To compensate this change, a second variable capacitor CV2 is added to the 

circuitry to make the loading capacitors of the neural amplifier and hence the bandwidth 

of the AFE constant during gain tuning. The transconductance of the OTA of the neural 

amplifier is 16.71μS. With the loading capacitance of 5pF, the upper cutoff frequency is 

around 5.3kHz. 

The MOS pseudo-resistor is realized by two 0.5μm/0.5μm diode-connected floating-body 

PMOS transistors. Simulation shows that such structure has the highest linearity of the 

resistance and is reciprocal due to its symmetry. The typical average resistance is 976GΩ. 

Therefore, the lower cutoff frequency of the AFE is around 3.3Hz. The bandwidth of the 

AFE is then 3.3Hz ~ 5.3kHz. Notice that this is only the theoretical value based on the 

circuit model. The implemented AFE normally has slightly smaller bandwidth due to 

parasitic capacitors. 

 

2.3 Implementation of the AFE 

This section describes details about the implementation of the AFE architecture, 

including the design and noise analysis of the OTA of the neural amplifier and the design 

of the OTA of the PGA. Specifications of the neural amplifier and the PGA will also be 

shown. 

 

2.3.1 OTA of the Neural Amplifier 

The OTA of the neural amplifier is the core of the AFE since it determines the overall 

performance of the block. There are several tradeoffs for the design: noise, power, gain, 

bandwidth, stability, output range and immunity to PVT variations. Among these 

tradeoffs, the noise performance is of the upmost importance. The input-referred noise of 

the neural amplifier is given by the equation below: [11] 
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𝑣𝑛𝑖,𝑁𝐴
2 = (

𝐶𝑖𝑛 + 𝐶𝑓1 + 𝐶𝑖𝑛,𝑂𝑇𝐴

𝐶𝑖𝑛
)
2

𝑣𝑛𝑖,𝑂𝑇𝐴
2 , 

where Cin,OTA is the input capacitance of the OTA and 𝑣𝑛𝑖,𝑂𝑇𝐴
2  is the input-referred noise 

of the OTA. We can see that with small Cin,OTA and large GM, the input-referred noise of 

the neural amplifier is approximately equal to the input-referred noise of its OTA. For a 

neural amplifier, the minimum required input-referred rms noise voltage is 50μV. [14] 

The typical extracellular neural background noise over the bandwidth of the action 

potential is 5μV ~ 10μV. [8] The goal of this design is to have an input-referred noise less 

than 5μV. 

After considering all those tradeoffs, we choose to implement the OTA by a fully 

differential telescopic amplifier for the following reasons: 

1) the Telescopic structure only has two current branches. This enables higher 

current through the input transistors without consuming too much power. Higher 

current provides larger gm and hence larger gain and lower thermal noise. The 

overall noise performance of this structure is also better than the current mirror 

OTA or the two-stage amplifier. 

2) The fully differential structure rejects differential noises from electrodes (such as 

background neural signal). Simulation also shows that for single-ended structure, 

the common-mode voltage of the output has a high chance of drifting away from 

the applied VCM when the output swing is high. This is possibly due to the 

asymmetry of the structure and the large resistance of MOS pseudo-resistors. 

3) It is easier to perform frequency compensation of this structure since it does not 

have the mirror pole. At low current, the mirror pole could be very close to the 

dominant pole, making it hard to compensate the circuit. If designed well, the 

frequency compensation of this structure can be done by simply placing loading 

capacitors at outputs to shift its dominant pole to higher frequency. This relates 

the phase margin of the OTA to the bandwidth of the neural amplifier. For our 

design, the loading capacitance is 5pF and is sufficient for compensating the OTA 

as well. 

4) The telescopic structure provides higher gain which is essential for minimizing 

the error of closed-loop gain. 

The proposed structure also has following tolerable disadvantages: 

1) The telescopic structure consumes considerable voltage headroom. For the 180nm 

silicon-on-insulator (SOI) process we used, when the supply voltage is lower than 

3V, although the design is still possible, the designed OTA does not have much 

immunity to PVT variations. At some process corners, the OTA simply fails to 

work. 
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2) The fully differential structure requires common-mode feedback (CMFB) circuit, 

which consumes power and may cause stability issues. The CMFB also decreases 

the bandwidth and increases the noise. 

3) The telescopic structure has limited output range. For this design, the issue is 

alleviated since the maximum amplitude of the action potential is only around 

500μV. [15] 

 

Figure 2.4: OTA of the neural amplifier. 

Transistor W/L (μm) 

M1,2 51/3 

M3,4 30/8 

M5,6 1/20 

M7,8 5 × 0.5/60 

M9,10 1/2 

M11,12 0.5/60 

Table 2.1: Transistor sizing of the telescopic amplifier. 
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The final design of the OTA is shown in Figure 2.4. The sizing of some important 

transistors is shown in Table 2.1. The DC gain of the OTA is given by: 

𝐴𝑣 = 𝑔𝑚1(𝑟𝑛||𝑟𝑝) ≈ 𝑔𝑚1[(𝑔𝑚3𝑟𝑜3𝑟𝑜1)||(𝑔𝑚5𝑟𝑜5𝑟𝑜7)], 

where rn is the output impedance looking into the drain of M5,6 and rp is the output 

impedance looking into the drain of M3,4. To avoid introducing low-frequency 

nondominant poles, rn and rp should have close values. To have a higher gain, we need to 

maximize gm1,2, which can be done by operating M1,2 in subthreshold region and 

increasing their aspect ratio. [11] We can also increase the size of M3,4 and M5,6 to boost 

the gain based on the following equation: 

{
 
 

 
 

𝑔𝑚𝑟𝑜 =

√2𝜇𝐶𝑂𝑋
𝑊
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𝜆 ∝
1

𝐿
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The input-referred noise of the OTA is given by: [11] 
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2 = 2 [
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𝑔𝑚7
𝑔𝑚1

)
2

]
1

𝑓
, 

where KB is Boltzmann’s constant, T is the absolute temperature, and KN and KP are the 

flicker noise coefficients of NMOS and PMOS transistors. The first part of the equation 

is the thermal noise and the second part is the flicker noise. We can see that larger gm1 

provides lower overall noise and larger gain simultaneously. Therefore, the aspect ratio of 

M1,2 should be as large as possible. However, the size of M1,2 should not be too large 

since large input capacitance of the OTA increases the overall noise level of the neural 

amplifier. We can also see that to reduce the noise, gm7 should be small and the size of 

M7,8 should be large. This means that the aspect ratio of M7,8 should be as small as 

possible. However, the aspect ratio of M7,8 should not be too small since large ro7,8 may 

introduce low-frequency nondominant poles. 

The CMFB circuit is formed by two MOS pseudo-resistors for sensing the common-

mode voltage of the output and a CMFB amplifier for comparing the sensed signal to the 

applied VCM. The CMFB circuit has two poles, which are located at the input and output 

of the CMFB amplifier respectively. To lower the effect of these two poles. The 

resistance of MOS pseudo-resistors should not be too high. The input capacitance and 

output impedance of the CMFB amplifier should be as low as possible. For this design, 

each MOS pseudo-resistor is realized by two 20μm/0.5μm floating-body PMOS 

transistors. The resistance is around 127GΩ. 

A stable and accurate reference current is of critical importance for the noise performance 

of the OTA. Any drastic change of the reference current will affect the gm and hence the 

noise of the circuit significantly. Therefore, a reference current generation circuit formed 

by regulated cascode stage is used. Its output current only depends on the source resistor 
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and the bias voltage applied. This type of circuit has strong immunity to PVT variations. 

Detailed simulation can be found in Chapter 4, Section 4.4.3. For this design, the 

reference current IRef is 100nA. The current of the telescopic amplifier is 2μA and of the 

CMFB amplifier is 400nA. 

Specifications of the neural amplifier are shown in Table 2.2. The overall performance of 

the neural amplifier is evaluated by the noise efficiency factor (NEF) and the power 

efficiency factor (PEF) given below: 

𝑁𝐸𝐹 = 𝑉𝑛𝑖,𝑟𝑚𝑠√
2𝐼𝑡𝑜𝑡

𝜋 ×
𝐾𝐵𝑇
𝑞 × 4𝐾𝐵𝑇 × 𝐵𝑊

, 

𝑃𝐸𝐹 = 𝑁𝐸𝐹2𝑉𝐷𝐷 , 

where Vni,rms is the rms input-referred noise of the neural amplifier, Itot is the total bias 

current, q is the elementary charge and VDD is the supply voltage. From Table 2.2, we can 

see that the integrated noise of the neural amplifier is slightly higher than 5μV. This is 

due to that fact that the lower cutoff frequency of the neural amplifier is very close to the 

flicker noise corner frequency. For the overall AFE block, the integrated noise will be 

lower since its lower cutoff frequency is farther away from the flicker noise corner 

frequency. This will be shown in Section 2.4. The equation of the noise density is given 

below: [2] 

𝑁𝑜𝑖𝑠𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑉𝑛𝑖,𝑟𝑚𝑠

√𝐵𝑊 ×
𝜋
2

. 

Power 8.82μW 

Supply Voltage 3V 

Bias Current (Including CMFB) 2.6μA 

Open-Loop Gain 83dB 

Closed-Loop Gain 40dB 

Gain Error 0.71% 

Bandwidth (5pF Loading Capacitor) 1.44Hz ~ 4.78kHz 

Input Range 7.2mVpp 

Integrated Noise over the Bandwidth 5.18μV 

Noise Density 59.78nV/Hz1/2 

NEF 4.66 

PEF 32.52 

Table 2.2: Specifications of the neural amplifier. 
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2.3.2 OTA of the PGA 

For the OTA of the PGA, the noise requirement is much less rigorous given sufficiently 

large gain of the neural amplifier. Some important design specifications include: power, 

output range, and gain error. For this design, the OTA is implemented by a fully 

differential two-stage amplifier for the following reasons: 

1) This structure provides large output swing since the output stage has adequate 

voltage headroom. 

2) It is easier to compensate this structure, especially at low current. However, the 

designer should make sure that the dominant pole occurs at the output of the first 

stage. Otherwise, Miller compensation will not be effective. 

3) Since it is a cascaded structure, it is easier to achieve high gain without 

consuming too much power. More specifically, the gain required for each stage is 

not very high and hence the gm requirement for each transistor is alleviated. 

The circuit of the OTA is shown in Figure 2.5. Sizing of some important transistors is 

shown in Table 2.3. Input transistors M1,2 are operating in subthreshold region to 

maximize the gain. Miller compensation is applied, and the phase margin is around 60°. 

The CMFB circuit is applied to the second stage only to avoid introducing too many 

poles in the feedback loop. The common-mode voltage of the output is sensed by two 

MOS pseudo-resistors realized by 20μm/0.5μm floating-body PMOS transistors. To set 

the common-mode voltage close to the applied VCM, the CMFB amplifier needs to have a 

moderate gain. Therefore, a one-stage current mirror amplifier is used. Specifications of 

the PGA are shown in Table 2.4. 

 

Figure 2.5: OTA of the PGA. 
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Transistor W/L (μm) 

M1,2 20/1 

M3,4 1/2 

M5,6 1/10 

M7,8 1/2 

M9,10 0.5/0.5 

M11,12 1/10 

Table 2.3: Transistor sizing of the two-stage amplifier. 

Power 5.79μW 

Supply Voltage 3V 

Bias Current (Including CMFB) 1.4μA 

Open-Loop Gain 71dB 

Closed-Loop Gain Range 7V/V ~ 100V/V (17dB ~ 40dB) 

Gain Tuning Step 3V/V 

Maximum Gain Error 2.77% 

Bandwidth (0.1pF Loading Capacitor) 2.70Hz ~ 133.59kHz 

Single Output Range 2.5Vpp 

Table 2.4: Specifications of the PGA. 

 

2.4 Simulation of the AFE 

Several tests are performed in Cadence simulations to evaluate the frequency response, 

noise, gain tuning function, gain error and signal distortion level of the AFE. All results 

are from pre-layout simulations. 

The amplitude frequency responses of the AFE at all 32 gain setups are shown in Figure 

2.6. Plot (a) shows the gain of the AFE in dB, from which we can see that the lower and 

upper cutoff frequency of the AFE remain the same at different gain setups. This means 

that the loading capacitance compensation technique described in Section 2.2 is effective. 

The bandwidth is 3.25Hz ~ 4.65kHz and covers most of the frequency spectrum of the 

action potential (approximately 100Hz ~ 7kHz). [15] Plot (b) shows the gain in linear 

scale, from which we can see the uniform gain tuning step. By comparing the mid-band 

gain of each response with the ideal gain, we can calculate the gain error at different 

setups, which is shown in Plot (c). We can see that the gain error increases as the closed-

loop gain increases. The maximum gain error is less than 4%. With such small gain error, 

accurate control over the signal amplitude can be realized. 
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Figure 2.6: Amplitude frequency responses of the AFE at different gain setups. 

The gain tuning function is also tested in real time. The result is shown in Figure 2.7. The 

input signal is a 1kHz sinusoidal wave with 50μV amplitude. The 5-bit digital control 

signal B0~4 changes by 1 LSB every 10ms. We can see that the amplitude of the output 

signal changes from 35mV to 480mV approximately. Notice that the common-mode 

voltage of the output does not always stay at 0V since sometimes the gain switching does 

not occur at the zero-crossing point. However, if the simulation lasts longer, the common-

mode voltage will ultimately settle down at 0V. 

 

Figure 2.7: Real-time gain tuning of the AFE. 
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To test the signal distortion level of the AFE, a 100ms-long real neural signal recorded 

from the hippocampus region is used as the input signal. [16] The signal amplitude has 

been adjusted to a smaller value to test the AFE with the maximum gain. The output 

signal from the AFE is compared with an ideally amplified neural signal. The ideally 

amplified neural signal is created in MATLAB by following two steps: 1) The real neural 

signal (with adjusted amplitude and sampled at 1MHz) is filtered by a second-order 

Butterworth bandpass filter with edge frequencies equal to the lower and upper cutoff 

frequency of the AFE. 2) The filtered signal is then amplified by 10000 to generate the 

ideally amplified neural signal. Figure 2.8 shows a 60ms-long section of the simulation 

result which contains three neural spikes. We can see that the output signal from the AFE 

maintains the shape of the original signal well and is almost identical to the ideally 

amplified neural signal. This shows that the AFE has low signal distortion level and can 

keep features of the original signal for later signal processing. 

 

Figure 2.8: Amplification of a real neural signal by the AFE. 
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Specifications of the AFE are summarized in Table 2.5. We can see that the integrated 

noise of the AFE is less than 5μV. The overall gain can be tuned linearly with wide 

range. This enables accurate control over the signal amplitude. Due to the fully 

differential structure, the AFE has very high common-mode rejection ratio (CMRR). The 

AFE also has sufficiently large bandwidth and input range for recording action potentials. 

In conclusion, this general-purpose AFE meets the design goal and is suitable to be 

integrated into our closed-loop neurostimulation system. 

Process 180nm Silicon-on-Insulator 

Total Power 14.61μW 

Supply Voltage 3V 

Bias Current (Excluding IRef Generation) 4μA 

Closed-Loop Gain Range 0.7kV/V ~ 10kV/V (57dB ~ 80dB) 

Gain Tuning Step 0.3kV/V 

Maximum Gain Error 3.89% 

Bandwidth (0.1pF Loading Capacitor) 3.25Hz ~ 4.65kHz 

Input Range 7.2mVpp 

Single Output Range 2.5Vpp 

CMRR >134dB 

Integrated Noise over the Bandwidth 4.81μV 

Noise Density 56.28nV/Hz1/2 

Table 2.5: Specifications of the AFE. 
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Chapter 3 Spike Detector 

 

3.1 Introduction to Action Potential Detection 

Real-time action potential detection plays an important role in on-chip neural signal 

processing. For our system, the event-triggered stimulation heavily relies on the fidelity 

of the spike detector. This chapter describes the design of a spike detector based on the 

absolute threshold detection (ATD) method. [17] Both algorithm design and circuit 

implementation will be presented. 

 

3.2 Algorithm Design 

The effectiveness of the spike detection method relies on the signal-to-noise ratio (SNR) 

and the robustness of the algorithm. Since the SNR is primarily set by the analog front-

end, algorithm design becomes essential to the performance optimization. As shown in 

the conceptual diagram representing the working principle of ATD method, the neural 

signal is constantly compared to the predefined threshold voltage within the detection 

window. The comparison result is then used to detect the action potentials. Although the 

scheme is simple, for real-time action potential detection in systems with limited 

computation resources, ATD method is as effective as other power-hungry and 

computation-intensive methods. [17] [18] 

One disadvantage of ATD method is its vulnerability to noises and artifacts. The 

implemented algorithm is thereby designed to improve the error tolerance of the spike 

detector. As shown in Figure 3.1, for each detection cycle, there are maximally twenty-

five comparisons. The spike detector only recognizes a spike when at least four 

comparisons show that the neural signal crosses the threshold voltage. Otherwise, the 

spike detector clears comparison results and goes to the next detection cycle. This process 

helps to distinguish the action potential from fake spikes caused by the stimulator or 

improper setup of threshold voltage. A detailed example will be shown in Section 3.4. 
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Figure 3.1: (a) The working principle of ATD method. (b) The flow chart of the 

implemented spike detection algorithm. 

 

3.3 Circuit Implementation 

The circuit of the spike detector is shown in Figure 3.2. There are three digital inputs to 

the detector: reset signal (RST), enabling signal (Detection) and input clock (CLK). The 

input clock is set to 100kHz. There are three analog inputs: neural signal (Vin), high 

threshold voltage (VthH) and low threshold voltage (VthL). For normal operation, VthH and 

VthL are set to 1.9V and 0.9V respectively. The spike detector has two outputs: “Result” 

and “Decision”. “Result” indicates the occurrence of action potential and “Decision” 

indicates the occurrence of threshold crossing. 

The comparison of neural signal with VthL and VthH is accomplished by two latch 

comparators. The outputs from two comparators are fed into an OR gate to generate the 

output “Decision”. When the detection cycle starts (“Detection” turns to 1), the input 

clock is converted to 25kHz and then fed into the level shifter which drives the enabling 

port (EN) of two comparators. Since one detection cycle is 1ms, the comparator network 

will perform maximally twenty-five comparisons within one detection cycle. 
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The output “Decision” is used to clock a 4-bit serial-to-parallel shift register formed by 

four asynchronous resettable positive-edge-triggered D flip flops. The shift register’s 

input is tied to 1 (1.5V) and four outputs are connected to an AND gate. After four clock 

cycles (four threshold crossings), all four outputs are 1 and the final output “Result” turns 

to 1. 

If after one detection cycle, “Result” does not turn to 1, the shift register will be reset at 

the end of detection. This makes sure that previous detection history will not be carried 

over to next detection cycle. If “Result” turns to 1, it will remain at 1 unless the spike 

detector is reset to initial state (RST turns to 1). 

 

Figure 3.2: Circuit of the spike detector. 
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3.4 Cadence Simulation 

The spike detector is tested by an amplified neural signal recorded from the hippocampus 

region. [3] Under normal operation, two threshold voltages VthL and VthH are set to 1.9V 

and 0.9V. The pre-layout simulation result is shown in Figure 3.3. We can see that 

within the detection window (1ms ~ 2ms), the neural signal has a wide region above VthH 

and the spike detector successfully captures this region. After four comparisons which all 

indicate that the neural signal has crossed the threshold voltage, “Result” turns to and 

stays at 1, meaning that a spike has been detected. 

 

Figure 3.3: Cadence simulation of the spike detector under normal operation. 
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To test the error tolerance of the spike detector, the high threshold voltage VthH is set to 

1.5V which is much lower than normal value. Under such setup, noises or signal artifacts 

have a higher chance of crossing the threshold voltage. The pre-layout simulation result 

is shown in Figure 3.4. The top plot shows the complete 32ms simulation. We can see 

that the spike detector successfully differentiates the action potential signal from noises. 

From the middle plot, we can see that although the signal between 19ms and 19.5ms 

crosses the threshold voltage, the number of comparisons indicating the threshold 

crossing is smaller than three. Therefore, the spike detector does not recognize this signal 

as the action potential. 

In conclusion, the designed spike detector presents strong error tolerance. The dynamic 

power of the spike detector is 239nW. 

 

Figure 3.4: Cadence simulation of the spike detector when VthH is 1.5V. 
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Chapter 4 Neural Stimulator 

 

4.1 Introduction to Neurostimulation 

Neurostimulation or neuromodulation is an important technique for today’s neuroscience 

research. It uses controlled stimuli (in electrical, optical or chemical form) to artificially 

excite neurons. For implantable biomedical devices and systems, electrical stimulation is 

the prevalently used method due to its feasibility of being implemented on a CMOS 

platform with low power consumption. [19] For this work, we will focus on the electrical 

neural stimulator. 

In this chapter, we will first review the concept of charge-balanced neurostimulation and 

the electrical circuit model of electrode-tissue interface. We will then investigate different 

types of stimulator design and discuss their pros and cons. Mathematical modeling of the 

electrical behavior of the electrode-tissue interface during stimulation will also be shown. 

Finally, the design of the stimulator used to form the closed-loop neurostimulation 

system will be presented. 

 

4.2 Charge-Balanced Neurostimulation 

There are three primary tradeoffs for neural stimulator design: safety, efficiency and 

performance. [2] For implantable devices, safety undoubtedly carries the highest weight 

among these tradeoffs. One major safety issue for electrical stimulation is the residual 

charge injected to the tissue caused by non-zero net current flow during stimulation or 

current leakage from the device. The accumulated residual charge raises the electrode 

potential and ultimately causes tissue damage and electrode corrosion. [9] For our closed-

loop neurostimulation system, one complete operation contains multiple stimulations 

performed in short time. This imposes even more rigorous safety requirements for the 

design. To address this issue, charge-balanced neurostimulation is needed. Several 

important techniques have been reported to achieve or improve the charge-balancing 

behavior of the stimulator: 

• Blocking Capacitor: A blocking capacitor can be placed at the output of the 

stimulator to limit charge accumulation on electrodes and block any DC path. The 

blocking capacitor requires a large capacitance to reduce the voltage drop across 

the capacitor and is thereby usually an off-chip capacitor. The voltage drop can be 

approximated by the equation below: [20] 

Δ𝑉 = 𝐼𝑆𝑡𝑖𝑚
Δ𝑡

𝐶𝐵
, 
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where Δt is the current pulse width and IStim is the amplitude of current pulse. 

Considering a 100μA 200μs current pulse going through a 1μF blocking 

capacitor, the voltage drop is then approximately 20mV which is acceptable in 

most design cases. For this work, all blocking capacitors used are 1μF. 

 

Figure 4.1: Blocking capacitor (CB in the graph). 

• Passive Discharge: Passive discharge can be used to clear residual charge by 

simply shorting the working electrode (the one connected to the blocking 

capacitor) to the reference electrode (the one connected to the common-mode 

voltage VCM). Although the realization is simple, passive discharge does not 

provide controlled discharging current and discharging time. [2] Therefore, to 

remove significant amounts of residual charge, passive discharge may not be the 

most reliable solution. 

 

Figure 4.2: Passive discharge (assuming blocking capacitor is used). 

• Biphasic Stimulation: Biphasic stimulation achieves charge balance by sending 

two current pulses sequentially. The cathodic pulse stimulates neuron cells and 

the anodic pulse actively discharges the electrode. As shown in Figure 4.3, the 

duration of cathodic phase, interphase delay and duration of anodic phase are 

given by: tc, tp and ta respectively. The current amplitude of cathodic pulse and 

anodic pulse are Ic and Ia respectively. 
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Figure 4.3: Biphasic stimulation (assuming blocking capacitor is used). 

Biphasic stimulation can be realized by monopolar or bipolar stimulation 

waveform. In a monopolar stimulation, both cathodic phase and anodic phase are 

generated from a single electrode. In a bipolar stimulation, cathodic phase and 

anodic phase are generated by a pair of electrodes. [2] 

 

Figure 4.4: Monopolar and bipolar stimulation. 

For charge-balanced stimulation, we want zero net charge flow to the tissue. Namely, we 

want: 

𝑄𝑡𝑜𝑡𝑎𝑙 = ∫ 𝐼(𝑡)𝑑𝑡
𝑡0+𝑇

𝑡0

= 0, 

where T is the duration/period of stimulation and t0 is the initial time. The time-varying 

current flow depends on the driving ability of the stimulator and the impedance of 

electrode-tissue interface. A simplified electrical circuit model of electrode-tissue 

interface is shown in Figure 4.5. [2] [21] As shown in the graph: RF is the Faradaic 

resistance; CF is the double layer capacitor; RS is the solution spreading resistance. 

 

Figure 4.5: Electrical circuit model of electrode-tissue interface. 
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Values of RF, CF and RS are based on the measurement of a low-cost 75μm/50μm-

diameter tungsten electrode commonly used in neuroscience research. The impedance is 

measured while the electrode is in 0.9g/100mil Sodium Chloride solution. [2] For two 

perfectly identical electrodes in contact with the tissue, the circuit model is symmetrical 

(RF1 = RF2 and CF1 = CF2). However, in reality, these electrodes will always have certain 

asymmetry. To have a comprehensive study of the effect of electrodes on the charge-

balancing behavior, we consider these cases: 1) symmetrical 75μm/50μm electrodes. 2) 

asymmetrical electrodes formed by a 75μm and a 50μm electrode. 3) asymmetrical 

electrodes formed by 75μm electrodes with 20% variation on both sides. Circuit 

parameters of them are shown in Table 4.1. 

Parameter Symmetrical 

(75μm) 

Symmetrical 

(50μm) 

Asymmetrical 

(75μm+50μm) 

Asymmetrical 

(20% Var.) 

CF1 55nF 18nF 55nF 66nF 

RF1 7MΩ 19MΩ 7MΩ 8.4MΩ 

RS 12kΩ 20kΩ 12kΩ 12kΩ 

CF2 55nF 18nF 18nF 44nF 

RF2 7MΩ 19MΩ 19MΩ 5.6MΩ 

Table 4.1: Circuit parameters of the electrode-tissue interface model. 

 

4.3 Overview of Electrical Neural Stimulator Design 

There are generally three types of electrical stimulators in terms of stimuli generation 

methods: voltage-regulated stimulator, current-regulated stimulator and charge-regulated 

stimulator. [2] In this section, we will focus on the first two and evaluate their charge-

balancing performance by both circuit simulation and mathematical modeling. 

 

4.3.1 Voltage-Regulated Bipolar Stimulator 

This type of stimulator enables flexible stimulation waveform and has very high energy 

efficiency. However, it has poor control over the charge injected to the tissue and thereby 

has the worst charge-balancing behavior. The simulated stimulator circuit is shown in 

Figure 4.6. [13] The biphasic waveform is realized by the cross-coupled switch and the 

voltage stimulation waveform is generated by a class-AB amplifier. 
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Figure 4.6: Voltage-Regulated bipolar stimulator. 

In Cadence simulation, a biphasic voltage pulse with 200μs pulse width (PW) and 1V 

amplitude (VDC) is injected to the 75μm electrode pair at t0 = 10μs. The interphase delay 

(tp) is set to 10μs. 

For mathematical modeling, we can derive the current in Laplacian domain and use 

inverse Laplace transform to find the current in time domain. The current in Laplacian 

domain is given by: 

𝐼(𝑡) = ℒ−1{𝐼(𝑠)} = ℒ−1 {
𝑉(𝑠)

𝑍(𝑠)
}. 

Assume that the voltage waveform has a positive and negative pulse with same pulse 

width and amplitude but no interface delay. Parameters of Z(s) are from the symmetrical 

model described in section 4.2. Then we have: 

𝑉(𝑠) =
𝑉𝐷𝐶
𝑠
[(𝑒−𝑡0𝑠 − 𝑒−(𝑡0+𝑃𝑊)𝑠) − (𝑒−(𝑡0+𝑃𝑊)𝑠 − 𝑒−(𝑡0+2𝑃𝑊)𝑠)], 

𝑍(𝑠) = 𝑅𝐹1||
1

𝑠𝐶𝐹1
+ 𝑅𝑆 + 𝑅𝐹2||

1

𝑠𝐶𝐹2
.  

The calculation is done in Wolfram Mathematica. Figure 4.7 shows the pre-layout 

simulation result. We can see that the net charge injected to the tissue is clearly not zero. 

This can be proven by the mathematical modeling, which generates approximately an 

identical current waveform. This comparison also proves that the mathematical modeling 

can accurately describe the electrical behavior of the electrode-tissue interface given 

small artifacts generated by circuits. 



27 

 

 

Figure 4.7: Cadence simulation and mathematical modeling of bipolar voltage-regulated 

stimulator. Left: current waveform. Right: stimulation waveform. 

Although it is possible to compensate the net charge flow by engineering the voltage 

waveform, this type of stimulator is not suitable for our system due to its overall poor 

charge-balancing performance. 

 

4.3.2 Current-Regulated Bipolar Stimulator 

This type of stimulator can be realized by a single current source/sink or multiple current 

sources. Here we discuss the simplest form shown in Figure 4.8. [22] The variable 

current sink has an output impedance given by: 

𝑅𝑜𝑢𝑡 ≈ 𝑔𝑚𝑛𝑟𝑜𝑛𝑟𝑜𝑝𝐴𝑣, 

where Av is the DC gain of the auxiliary amplifier. For the simulated circuit, the auxiliary 

amplifier is a two-stage amplifier with DC gain of 60dB. This huge output impedance 

enables the current sink to drive the electrode-tissue interface given sufficient supply 

voltage. The negative feedback also regulates the source voltage of PMOS transistors. 

For sufficiently large gain, the source voltage is close to the reference voltage VREF 

(shown in equation below). The binary weighted PMOS transistors form a 4-Bit current 

DAC. With regulated VSD, accurate current control can be achieved. 

𝑉𝑆 =
𝐴𝑣

1
𝑟𝑜𝑝𝑔𝑚𝑛

+ 1 + 𝐴𝑣

𝑉𝑅𝐸𝐹 ≈ 𝑉𝑅𝐸𝐹. 
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Figure 4.8: Current-Regulated bipolar stimulator. 

Two types of loads are used to test the driving ability of the stimulator: symmetrical load 

formed by two 75μm electrodes and asymmetrical load formed by one 75μm electrode 

and one 50μm electrode. A biphasic current pulse with 200μs pulse width (PW) and 

74μA amplitude (IDC) is injected to the electrode pair at t0 = 10μs. The interphase delay 

(tp) is set to 10μs. The pre-layout simulation result is shown in Figure 4.9. We can see 

that for symmetrical load, the stimulator shows excellent charge-balancing performance. 

The voltage across the blocking capacitor is approximately zero at the end of stimulation. 

However, for asymmetrical load, we can see that the positive current pulse is 

“attenuated”, and the net charge flow is non-zero. 

 

Figure 4.9: Cadence simulation of current-regulated bipolar stimulator. Left: Stimulation 

current. Right: Voltage across the blocking capacitor. 

The failure of charge-balanced stimulation is mainly caused by the poor driving ability of 

the stimulator when small capacitor is present (introduced by the 50μm electrode). The 
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small capacitor causes more rapid drop of the NMOS transistor’s drain voltage during 

current injection, which ultimately pulls the NMOS into triode region. When the NMOS 

falls out of saturation region, the output impedance of the stimulator decreases 

significantly, and the stimulator loses accurate control over the output current. This 

failure can be further revealed by observing the voltage on the blocking capacitors. 

Another issue is the high voltage caused by the switching process. During the switching 

between two phases, blocking capacitors and capacitors in the load act like a charge 

pump. As shown in Figure 4.10, we can see that VBC+ jumps at the onset of anodic 

phase. This voltage jump could be very high and could ultimately damage transistors. 

 

Figure 4.10: Voltage on blocking capacitors during stimulation. 

Although such asymmetry may not appear practically, this design provides very limited 

output current range if charge-balanced stimulation is desired. 

 

4.3.3 Current-Regulated Monopolar Stimulator 

Monopolar stimulator is suitable for electrode arrays since multiple electrodes can share 

one reference electrode. If well designed, it also has larger driving ability. However, this 

type of stimulator usually needs high supply voltage and the circuitry is complex. [23] 

[24] [22] [25] The conceptual diagram of the stimulator is shown in Figure 4.11. Detailed 

circuit implementation is covered in Section 4.4. As shown in graph, the stimulator has 

both current sink and source which are usually controlled by current mirrors. A biphasic 

current pulse is generated from a single electrode. The reference electrode is connected to 

the common-mode voltage VCM which is usually half of supply voltage. Also notice that 

the stimulator only needs one blocking capacitor. 
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Figure 4.11: Current-Regulated monopolar stimulator. 

 

4.4 Design of a Charge-Balanced Neural Stimulator 

This section describes the design of a charge-balanced current-regulated monopolar 

stimulator. The conceptual circuit diagram of the design is shown in Figure 4.12. The 

stimulator sends biphasic current pulse to minimize net charge introduced to the tissue 

and then performs passive discharge by closing the switch at the output to clear residual 

charge. Current source and sink are controlled by two low-voltage current mirrors in 

series. The controlled current from a 4-bit current DAC is injected in between two current 

mirrors. The proposed structure minimizes the current mismatch introduced by current 

copying. The current copying ratio is 20. 

 

Figure 4.12: Conceptual circuit diagram of the final design. 
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4.4.1 Study of Passive Discharge 

Before going into the circuit implementation, it is necessary to study the electrical 

behavior of the electrode-tissue interface during passive discharge. Assume that the 

current waveform has a positive and negative pulse with same pulse width (PW) but 

different amplitude (Ic and Ia respectively). The current is injected at t = 0 and there is no 

interphase delay. The current waveform in Laplacian domain is then given by: 

𝐼𝐷𝑟𝑖𝑣𝑒(𝑠) =
1

𝑠
[𝐼𝑐(1 − 𝑒

−𝑃𝑊𝑠) − 𝐼𝑎(𝑒
−𝑃𝑊𝑠 − 𝑒−2𝑃𝑊𝑠)]. 

The driving voltage for generating such current through the model impedance Z(s) is: 

𝑉𝐷𝑟𝑖𝑣𝑒(𝑡) = ℒ
−1{𝑉𝐷𝑟𝑖𝑣𝑒(𝑠)} = ℒ

−1{𝐼𝐷𝑟𝑖𝑣𝑒(𝑠)𝑍(𝑠)}. 

We know that during passive discharge, two electrodes are shorted, and the output 

voltage is equivalently zero. If the passive discharge takes place immediately after 

stimulation, the total output voltage is: 

𝑉𝑜𝑢𝑡(𝑡) = 𝑉𝐷𝑟𝑖𝑣𝑒(𝑡) × [𝜃(𝑡) − 𝜃(𝑡 − 2𝑃𝑊)], 

where θ(t) is Heaviside step function. Total output current is then given by: 

𝐼𝑜𝑢𝑡(𝑡) = ℒ
−1{𝐼𝑜𝑢𝑡(𝑠)} = ℒ

−1 {
ℒ{𝑉𝑜𝑢𝑡(𝑡)}

𝑍(𝑠)
}. 

Suppose the pulse width is 200μs and the load is 75μm electrodes with 20% variation on 

both sides. Assume that cathodic current and anodic current have following relationship: 

𝐼𝑐 = 𝐼𝑎(1 + 𝜀), 

where ε is the current mismatch in percentage. Assume that the discharging time is tPD. 

The ratio of cleared residual charge to total residual charge introduced by current 

mismatch is then given by: 

𝑅𝑃𝐷 =
𝑄𝑐𝑙𝑒𝑎𝑟𝑒𝑑
𝑄𝑛𝑒𝑡

=
|∫ 𝐼𝑜𝑢𝑡(𝑡)𝑑𝑡
2𝑃𝑊+𝑡𝑃𝐷
2𝑃𝑊

|

(𝐼𝑐 − 𝐼𝑎)𝑃𝑊
. 

The ratio RPD is evaluated in three cases: 1) Vary tPD at Ia = 75.23μA and ε = 10%. 2) 

Vary ε at Ia = 75.23μA and tPD = 570μs. 3) Vary Ia at ε = 10% and tPD = 570μs. Plots of 

them are shown in Figure 4.13. The output current at Ia = 75.23μA, ε = 10% and tPD = 

570μs is also shown. All calculations are done in Mathematica. From the graph, we can 

see that RPD only depends on ε and tPD. For 10% mismatch, 570μs-long passive discharge 

can clear 83.71% residual charge which is enough for our design. As discharging time 

increases beyond 500μs, efficiency of passive discharge decreases significantly. For the 

final design, discharging time is set to 570μs. 
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Figure 4.13: Mathematical modeling of passive discharge. (a) Output current waveform. 

(b) RPD vs tPD. (c) RPD vs ε. (d) RPD vs Ia. 

 

4.4.2 Circuit Implementation 

The circuit is shown in Figure 4.14. The output current amplitude of the current DAC is 

controlled by four binary weighted PMOS transistors D0 ~ 3. Two auxiliary amplifiers are 

used to boost the output impedance at two ends and regulate D0 ~ 3’s drain voltage to VBias 

and source voltage to 3.5V. Digital control is realized by four single-pole, double throw 

(SPDT) switches connected to the gates of D0 ~ 3. Each SPDT switch is implemented by 

two 1μm/1μm floating-body transistors due to their high breakdown voltage. When the 

digital input is 1, the gate is connected to VBias (PMOS is on) and when the digital input is 

0, the gate is connected to 3.5V (PMOS is off). 

We can see that the resolution (LSB) of the current DAC is thereby set by VBias. For our 

system, the desired value is 300nA. To obtain such resolution, VBias is generated by a 

current mirror formed by transistor DB (which has same size as D0) and a 300nA current 

reference. The current reference is a regulated cascode stage whose current output only 

depends on the source resistor. This type of current reference has strong immunity to 

process variation and guarantees stable resolution of current DAC. With 300nA 

resolution, the output range of current DAC is 0.3μA ~ 4.5μA. The current DAC is 

driving the PMOS/NMOS low-voltage current mirror which controls output current 

source/sink respectively. With current copying ration of 20, the stimulator’s output range 

is 6μA ~ 90μA with 6μA resolution. 
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One major issue about the large-ratio current copying is its significant noise current 

introduced by the flicker noise of the reference transistor (N2 or P2), which will translate 

to the noise voltage on the load and may affect the neural signal recording. However, for 

our system, since the stimulation and the recording do not happen simultaneously, and 

the stimulator is completely off during the detection phase, the noise issue is not severe. 

To further alleviate this issue, we can insert a resistor between gates of N2 and N4 and a 

same one between gates of P2 and P4 to reduce noises. [26] 

The output stage contains a current source and a current sink, which are both realized by 

regulated cascode stage. The auxiliary amplifier also regulates the drain voltage of N4/P4 

to the drain voltage of N2/P2. Therefore, the channel length modulation effect of N4/P4 is 

eliminated and accurate current copying can be achieved. Transistors N5 and P5 are used 

to lower |VDS| of N3, 4 and P3, 4 during stimulation to protect them from high-voltage 

breakdown. 

 

Figure 4.14: Circuit of charge-balanced current-regulated monopolar stimulator. 

The phase switching is controlled by “Up” and “Down” which corresponds to cathodic 

phase and anodic phase respectively. Each controlled switch is implemented by a 

1μm/1μm floating-body transistor. Switching procedure of the current sink is shown in 

Figure 4.15 (current source has a similar process). In state (a), the current sink is 

connected to the output and the regulated cascode stage is formed by auxiliary amplifier 

and N3, 4. In state (b), current sink is disconnected from the output and the gate of N3 is 

tied to ground to fully turn off the current sink. The output of the axillary amplifier is 

now connected to its negative input to form a voltage buffer. The voltage buffer 
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maintains the voltage at the negative input in state (a) so that when the current sink goes 

back to state (a) to form the regulated cascode stage, the drain voltage of N4 can quickly 

settle down. This procedure helps to eliminate the sharp current spike during phase 

switching. 

Auxiliary amplifiers at the output stage play an important role in the stimulator’s 

performance. Taking the current sink as an example, as IDAC changes from 0.3μA to 

4.5μA, drain voltage of N2 can change widely. This means that the auxiliary amplifier 

needs to have large input common mode range (ICMR). Since the drain voltage of N2 

could be very low at minimum current output, auxiliary amplifier with PMOS input is 

used to regulate N3. For current source, NMOS-input auxiliary amplifier is used. In the 

final design, both types are realized by two-stage amplifier. The PMOS-input amplifier 

has minimum gain of 60dB over VCM of 0.1V ~ 2.5V. The NMOS-input amplifier has 

minimum gain of 52dB over VCM of 0.3V ~ 2.9V. 

 

Figure 4.15: Switching of current sink. (a) current sink is on. (b) current sink is off. 

The passive discharge takes place after the stimulation phase. During the passive 

discharge phase, the stimulator’s output is shorted to VCM. Outside the passive discharge 

phase, switches are open and ideally no current flows through them. There are three 

tradeoffs for the design: the discharging speed, the leakage current and the circuit’s 

ability to endure high voltage. Cadence simulation shows that when the stimulator is 

driving the asymmetrical 75μm model with 90μA biphasic current pulse, the electrode 

voltage (Vout in the graph) can vary from 2V to 5V approximately. This wide voltage 

variation poses following constraints for the design: (a) The gate voltage cannot be too 

high during the stimulation phase. Otherwise the leakage current through the circuit will 

significantly degrade the charge-balancing performance. (b) At least two transistors need 

to be stacked to form the circuit. A single transistor can hardly handle such wide voltage 

change since VGS will possibly exceed the breakdown voltage. (c) The aspect ratio of the 

transistor cannot be too large since the breakdown voltage of the transistor decreases as 

the length decreases or the width increases. The aspect ratio cannot be too small either. 

Otherwise the discharging will be very slow and not enough residual charge can be 
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cleared for the given time. For the reliability, |VDS| is kept below 2.75V and |VGS| is kept 

below 3.5V for all floating-body transistors. 

The final design of the passive discharge circuit is shown in Figure 4.16. The circuit is 

formed by two switches controlled by “ENPD” and “ENPD2”. These two digital control 

signals have the same waveform but different amplitude. “ENPD” has an amplitude of 

1.5V/4V and “ENPD2” has an amplitude of 3V/5.5V. Each switch is implemented by a 

floating-body NMOS transistor. As shown in the graph, during the passive discharge 

phase, “ENPD” is 4V and “ENPD2” is 5.5V. Both S1 and S2 are on. VGS1 is 1V and VGS2, 

for the worst case, is 2.5V. Outside the passive discharge phase, “ENPD” is 1.5V and 

“ENPD2” is 3V. When Vout is 2V, S2 is on. However, VGS1, for the worst case, is -0.5V. 

This ensures that S1 is always off. When Vout is 5V, S1 and S2 are both off. S2 acts like a 

protection transistor for S1. Since VG2 is 3V, VS2 or VD1 is always below 3V. This means 

that VGS1 for the worst case is -1.5V. In conclusion, VDS and VGS of S1 and S2 do not 

exceed breakdown voltage in both two cases. Notice that S1 has smaller width compared 

with S2 since we want to minimize the leakage current when S1 is off and S2 is on. 

 

Figure 4.16: Implementation of passive discharge. 

 

4.4.3 Cadence Simulation 

In Cadence simulation, the stimulator is set to send 200μs-pulse-width biphasic pulse 

with 10μs interphase delay. Passive discharge takes place 10μs after stimulation and lasts 

for 570μs. The stimulator then stays idle till next stimulation. One stimulation cycle takes 

2ms. The load is 75μm electrodes with 20% variation on both sides. 

Three tests are performed to evaluate the static nonlinearity, passive discharge function 

and charge-balancing performance of the stimulator. The pre-layout simulation result is 

shown in Figure 4.17. Plot (a) shows all 15 output current values. The output current 

amplitude is taken as the average amplitude of cathodic pulse and anodic pulse. 

Calculation shows that the maximum differential nonlinearity (DNL) and the maximum 

integral nonlinearity (INL) are 0.0011 LSB and 0.0010 LSB respectively. Such low 

DNL/INL enables accurate current control and makes the stimulator a good candidate for 

generating programmable current waveform. 

In the test of passive discharge, the output current amplitude is set to 75.23μA to compare 

its performance to the modeling in section 4.4.1. As shown in plot (b), the discharging 
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curve from Cadence simulation and mathematical modeling are very close to each other. 

This again proves that the modeling method in section 4.4.1 is very accurate. The 

circuit’s discharging current is slightly less than the value predicted by modeling due to 

the nonideality of MOS switch. Despite that, the circuit is still able to clear 80.54% 

residual charge which is only slightly lower than the predicted value (83.71%). 

In the test of successive stimulations, the stimulator operates for 32ms with output current 

amplitude drops from 90μA to 0μA. As shown in plot (c)-1, the stimulator faithfully 

changes output current and performs passive discharge every 2ms. Plot (c)-2 shows how 

the electrode voltage changes during stimulation. We can see that at the end of 15 

stimulations, the electrode voltage goes back to VCM (3V), which means very small net 

charge injection. 

 

Figure 4.17: Cadence simulation of the final design. (a) All output current waveforms. (b) 

Test of passive discharge function. (c)-1 Output current during successive stimulation. 

(c)-2 Electrode voltage during successive stimulation. 

To have a more comprehensive evaluation of the charge-balancing performance, the 

stimulator is also tested under maximum current output at different process corners. 

Current mismatch is calculated by the equation below. Testing result based on pre-layout 

simulation is shown in Table 4.2. 

𝜀 =
𝐼𝑛𝑒𝑡
𝐼𝑜𝑢𝑡

=

1
𝑡𝑆𝑡𝑖𝑚

|∫ 𝐼𝑜𝑢𝑡(𝑡)𝑑𝑡
𝑡0+𝑡𝑆𝑡𝑖𝑚
𝑡0

|

1
2 (𝐼𝑎 + 𝐼𝑐)

. 
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Corner tt ff ss fs sf fff ssf 

Ic (μA) 90.29 84.72 96.12 91.12 90.27 88.67 97.08 

Ia (μA) 90.29 84.72 96.12 91.13 90.28 88.68 97.08 

Inet (nA) 94.65 90.54 113.10 257.00 116.20 96.42 126.50 

ε (%) 0.10 0.11 0.12 0.28 0.13 0.11 0.13 

Table 4.2: Current mismatch at different process corners. 

We can see that for typical process, the stimulator has best charge-balancing performance 

and the current mismatch is only 0.1%. We can also see that the maximum change of 

output current due to process variation is only 7%. This shows that the design has very 

robust performance and strong immunity to process variation. Specifications of the final 

design are summarized in Table 4.3. 

Stimulator Type Monopolar Current-Regulated 

Stimulation Current 6μA ~ 90μA 

Stimulation Frequency 500Hz 

Typical Current Mismatch 0.10% 

Current DAC Resolution 4 Bit 

Maximum DNL 0.0011 LSB 

Maximum INL 0.0010 LSB 

Idle Power 3.626uW 

Power Supply 6V 

Table 4.3: Specifications of the final stimulator design. 
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Chapter 5 Peripheral Circuitry 

 

5.1 Introduction to the Peripheral Circuitry of the System 

The peripheral circuitry plays an important role in the timing and mutual control of three 

major function blocks of the system: the analog front-end, the spike detector and the 

neural stimulator. It also modulates the current states of the system to more readable 

output. The peripheral circuitry is primarily formed by a stimulation timing generation 

module (STGM) and a 4-bit counter. The STGM controls three important phases of the 

system: the stimulation, the passive discharge and the detection phase. The 4-bit counter 

counts the number of stimulations performed and increases the stimulation current 

accordingly. Another important circuit is the level shifter. Since some circuit blocks (such 

as the stimulator) are operating at high voltage (>1.5V) and most digital logics are 

operating at low voltage to save power, level shifters are used for converting the output 

from digital logics to high-voltage control signal. Detailed implementation of the 

peripheral circuitry will be shown in following sections. 

 

5.2 Design and Implementation of the Level Shifter 

The level shifter converts a low-voltage digital signal to a high-voltage digital signal as 

shown in Figure 5.1. For our system, most outputs from digital logics are 1.5V/0V. The 

maximum driving voltage required is 6V/3.5V. For the 180nm silicon-on-insulator (SOI) 

process, to ensure that the transistor does not break down, VDS needs to be kept below 

2.75V. To adapt to this voltage limit and fulfill the driving requirement, two types of 

level shifters are designed. Specification of each type is shown in Table 5.1. The low-

voltage type (LVLS) increases the output range but does not change the lower bound of 

power supply. The high-voltage type (HVLS) not only increases the output range but also 

levels up the lower bound of power supply. 

 

Figure 5.1: The input and output of a level shifter. 
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 VSL (V) VDL (V) VSH (V) VDH (V) 

LVLS 0 1.5 1.5 4 

HVLS 0 1.5 0 2.5 

Table 5.1: Specification of the level shifter. 

The circuit of LVLS and HVLS are shown in Figure 5.2. [27] HV-INV and LV-INV are 

high-voltage inverter powered by VSH/VDH and low-voltage inverter powered by VSL/VDL 

respectively. For HVLS, four transistors are stacked on each side to alleviate VDS on a 

single transistor. For LVLS, since the output voltage is not that high, protection 

transistors are not used. 

 

Table 5.2: Circuit of the level shifter. 

 

5.3 Design and Implementation of the STGM 

The conceptual circuit diagram of the STGM is shown in Figure 5.2. There are two inputs 

to the STGM: a global reset signal (RST) and a 100kHz clock signal (CLK). The input 

clock signal firstly goes through two 5-stage Johnson ring counters to generate a 1kHz 

clock signal with different delays. The 100kHz input clock and the 1kHz generated clock 

are then modulated by a clock modulation block (CMB). The CMB is primarily formed 

by combinational logics and is periodically reset by a 500Hz clock signal generated from 

the 1kHz clock. The CMB generates four low-voltage digital signals: “PD”, “Detection”, 

“Cathodic” and “Anodic”. These low-voltage digital signals are then converted to high-

voltage control signals by six level shifters. The final outputs are: “ENPD” and “ENPD2” 

for controlling passive discharge, “Detection” for controlling the detection of action 

potential, “Up” and “Up̅̅̅̅ ” for controlling the current source of the stimulator and “Down” 

and “Down̅̅ ̅̅ ̅̅ ̅̅ ” for controlling the current sink of the stimulator. 
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Figure 5.2: Circuit of the stimulation timing generation module (STGM). 

Since all outputs have period of 2ms, a 2.1ms transient simulation in Cadence is run to 

test the STGM. As shown in Figure 5.3, the STGM is firstly reset for 1μs. After reset, 

there is a 20μs initial state. During the initial state, all output states are 0 except 

“Detection” which has a 10μs pulse. This initial pulse is intentionally set to ensure that 

the stimulation current starts from the lowest amplitude. The detailed mechanism is 

explained in the next section.  

From the plot of the output control signals, we can find the operation sequence of the 

system. After the initial state, the system enters the stimulation phase which comprises a 

200μs cathodic phase, a 10μs interphase delay and a 200μs anodic phase sequentially. 

After the stimulation phase, there is a 10μs interphase delay and then the system enters 

the 570μs-long passive discharge phase. After the passive discharge phase, the system 

immediately enters the 1ms detection phase. After the detection phase, the system goes 

back to the stimulation phase and repeats subsequent tasks. 

The designed STGM shows robust performance at different process corners. The 

dynamic power consumption is 69nW. 
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Figure 5.3: Outputs from the STGM. 

 

5.4 Design and Implementation of the 4-Bit Counter 

The counter has two inputs: a global reset signal (RST) and an input clock signal (CLK). 

The clock signal is counted by a 4-bit ripple counter. Each output of the ripple counter is 

then connected to a digital buffer. The buffered outputs from the ripple counter are 

converted to a voltage signal (VBout) by an R-2R DAC and converted to four high-voltage 

digital control signals (B0~3) by four level shifters. Notice that when CLK is 1, all outputs 

from level shifters are forced to be 0. 

When the counter is deployed in the system, its input CLK is connected to the output 

“Detection” from the STGM. Its four outputs B0~3 are connected to the digital control 

ports of the neural stimulator VB0~B3 respectively. Therefore, the counter counts the 

number of stimulations performed and encodes this number to a voltage output. From this 

voltage output, we can derive the current pulse amplitude of last stimulation. Besides 

counting, the counter also increases the amplitude of stimulation current by one LSB after 

each “Detection” pulse. Section 5.3 mentions that “Detection” has a 10μs initial pulse 

during the initial state of the STGM. This initial pulse is intentionally set to make sure 

that B0~3 from the counter starts from 0001 or equivalently the stimulator starts from the 

minimum stimulation current. 

Figure 5.5 shows a 32ms transient simulation in Cadence. We can see that both VBout and 

B0~3 accurately represent the number of counted pulses. Notice that B0~3 are set to 0000 

when CLK is 1 to ensure that the stimulator is turned off during detection. The dynamic 

power consumption of the counter is 251nW. 
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Figure 5.4: 4-Bit Counter. 

 

Figure 5.5: Outputs from the 4-bit counter. 
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Chapter 6 System Integration 

 

6.1 Introduction to the Integrated System 

This chapter describes the integration of the closed-loop neurostimulation (CLN) system 

by using circuit blocks described in previous chapters. The system aims to find the 

minimum stimulation current that is needed to evoke an action potential from neurons. 

The operational scheme is to perform stimulation and detection sequentially and 

repeatedly, and gradually increase the stimulation current until the action potential is 

observed. Details about the system can found in Chapter 1. The final design was 

implemented in 180nm silicon-on-insulator (SOI) process and was submitted to the 

manufacturer in November 2018. 

The chapter is organized as follows: Section 6.2 describes the architecture and 

mechanism of the system. Section 6.3 shows the implementation of the system. Section 

6.4 presents the simulation of a complete operation of the system. 

 

6.2 System Architecture 

Figure 6.1 shows the conceptual circuit diagram of the implemented system. The 

complete CLN system has five major blocks: the analog front-end (AFE), the spike 

detector, the stimulation timing generation module (STGM), the counter and the neural 

stimulator. Due to the limited time for the design, the AFE has not been integrated into 

the implemented system. However, since the core function of the system (detection and 

stimulation) only relies on the other four blocks, the system can still be tested in the 

simulation. For the chip measurement, an off-chip low-noise amplifier will be used to 

complement the implemented chip to form the closed-loop system. 

Here we will look at the function of the complete system. As shown in the Figure 6.1, a 

closed loop is formed by the stimulator, the AFE, the spike detector and the STGM. The 

STGM controls the stimulator to perform charge-balanced current-mode neurostimulation 

to the tissue. The intensity of the stimulation current is controlled by the counter and will 

increase by one LSB (around 4.36μA) for the next stimulation. The working electrode is 

also connected to the AFE, whose output is connected to the spike detector. After each 

stimulation, the system turns the stimulator off and starts the action potential detection. 

The neural signal from the tissue gets amplified by the AFE and is then analyzed by the 

spike detector. If the spike detector does not detect any spike, the STGM will continue 

normal function. The system will start another stimulation with higher intensity and 

repeat subsequent tasks. If the spike detector detects the spike, the system will recognize 

the intensity of the last stimulation as the minimum stimulation current needed to evoke 
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an action potential. There is then no need to continue the stimulation-detection process. 

The spike detector will thereby terminate the STGM by keeping its reset signal high. This 

essentially stops the operation of the system. 

 

Figure 6.1: Conceptual circuit diagram of the implemented CLN system. 

The system has six inputs: a global reset signal (RST), a 100kHz input clock signal 

(CLK), two bias voltage signals for setting up the ATD-based spike detector (VthL and 

VthH) and two bias voltage signals for setting up the LSB of the current-mode neural 

stimulator (Bias1 and Bias2). There is only one signal output from the system: VBout from 

the 4-bit counter. VBout reports the number of stimulations performed, from which we can 

calculate the intensity of the last stimulation. Details can be seen in Chapter 5. 

Notice that there is one slight difference between the stimulator in the implemented 

system and the stimulator described in Chapter 4, Section 4.4.2. The former one needs 

external biasing to set up the LSB of its internal current DAC. Its circuit is shown in 

Figure 6.2. The latter one has on-chip biasing generation circuit for setting up the LSB. It 

was designed after chip fabrication and is thereby not part of the system. Other than the 

biasing, two stimulators have a fully identical structure. Details about the circuit structure 

can be found in Chapter 4, Section 4.4.2. 
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Figure 6.2: Circuit of the neural stimulator in the implemented system. 

 

6.3 Implementation of the System 

The layout of the chip is shown in Figure 6.3. Specifications of the chip are summarized 

in Table 6.1. Detailed specifications of each block can be found in previous chapters. 

 

Figure 6.3: Layout of the implemented system. 
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Chip Dimension 0.9mm × 0.7mm 

Idle Power Consumption 4μW 

Power Supply 0V ~ 6V 

Stimulator Type Monopolar Current-Regulated 

Stimulation Current 4.36μA ~ 65.40μA (Adjustable) 

Stimulation Current Resolution 4.36μA (Adjustable) 

Stimulation Frequency 500Hz 

Typical Stimulation Current Mismatch 0.10% 

Table 6.1: Specifications of the chip. 

 

6.3.1 Overview of Applied Layout Techniques 

This section describes some important layout techniques applied to the implementation of 

the system. Most layout issues can be avoided by complying with the layout rules from 

the PDK. However, some design-specific layout issues still need to be addressed by the 

designer. 

• Electromigration: Due to the low-power and low-current feature of the system, 

the electromigration issue is not severe. However, for reliability, all power supply 

traces have larger width than the minimum specified one and are implemented in 

metal layers with better current handling ability. 

• Antenna Effect: For our design, the antenna effect is most significant in the 

digital circuitry where many gates could be connected to one long metal trace. 

This issue is addressed by shunt wiring. More specifically, a tie-down diode 

realized by a diode-connected transistor is connected to the gate of each protected 

transistor to avoid charge accumulation on the metal trace connected to the gate. 

• Gate Shadowing Effect: The gate shadowing effect normally affects the analog 

circuit sensitive to symmetry. [26] One layout example can be seen in Figure 6.4. 

For the differential pair, four transistors are vertically placed to ensure that drain 

and source region see same surrounding environment. This improves the 

symmetry of the circuit. Same approach is applied to the current DAC and the 

current mirror shown in the graph. 

• Well Proximity Effect: For current copying and multiplication, multiple 

transistors with same size are connected in parallel to form a single transistor with 

equivalent aspect ratio. For the current mirror in Figure 6.4, the current copying 

ratio is 20. Any deviation from this ratio will cause current mismatch of the 

stimulator. To minimize the transistor mismatch, 20 transistors with the same size 

are used. To ensure that each transistor sees same surrounding environment, 

dummy transistors are also placed around the current mirror. Similar approach is 

applied to the current DAC. 
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• ESD: Double-gate ESD diodes are used for ESD protection. For high-voltage 

power supply, stacked diodes are used. 

 

Figure 6.4: Partial layout of the stimulator: 1) Differential pair. 2) Current DAC. 3) 

Current mirror. 

 

6.4 Simulation of the System 

For the designed system, Cadence simulation can only capture its open-loop behavior. 

Some important side effects in closed-loop BMI systems (such as the stimulation artifact) 

can hardly be accurately modeled and need to be measured in vitro or in vivo. However, 

the open-loop simulation still provides valuable information about basic functions of the 

system and is essential for the evaluation of the performance of the system. 

In terms of stimulation artifact, since the system does not perform stimulation and 

detection simultaneously, the issue is already alleviated. Besides that, Chapter 4 shows 

that the 570μs-long passive discharge can quickly clear any residual charge on the 

electrode so that when detection begins, the electrode voltage already settles down to 

VCM. Therefore, we assume that the stimulation artifact has only a small impact on the 

system. 

To test the system, we break the loop by disconnecting the electrode from the AFE and 

replace the AFE with an ideal neural signal source. The signal is recorded from the 

hippocampus region and has already been amplified. [16] The electrode-tissue interface 

model used is the asymmetrical model with 20% variation. Detailed information can be 

found in Chapter 4, Section 4.2. A blocking capacitor of 1μF is used. 
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The post-layout simulation results are shown below. Figure 6.5 shows one complete 

operation of the system. We can see that the intensity of the stimulation current increases 

by one LSB (4.36μA) every 2ms. VBout which represents number of stimulations 

performed also increases by one LSB (93.75mV) after each stimulation. After the 

fourteenth stimulation, a neural spike occurs at around 26ms. This triggers the spike 

detector which sends a flag signal (“Result”) to the STGM. The system then stops the 

stimulation-detection process. The output VBout stays at 1.406V indicating that 14 

stimulations have been performed and the intensity of final stimulation is 14 LSB or 

61.04μA. 

 

Figure 6.5: Transient simulation of one complete operation of the system. 
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Figure 6.6 shows the timing of the three phases. We can see that the detection phase has 

an initial pulse to set up the first stimulation. After that, these three actions: stimulation, 

passive discharge and detection happen sequentially and repeat themselves with period of 

2ms until a spike is detected. 

 

Figure 6.6: Timing of the three phases of the system. 
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Figure 6.7 shows the stimulation current and the electrode voltage during operation. We 

can see that at the end of operation, the electrode voltage settles down to VCM. The 

intensity of the final stimulation is 61.00μA which is very close to the expected value 

(61.04μA). The small discrepancy is caused by the deviation from the designed current 

copying ratio, which is possibly due to the transistor mismatch in the layout. 

 

Figure 6.7: Stimulation current and electrode voltage during operation. 

In conclusion, the integrated CLN system accomplishes well the designed operation flow. 

The implemented stimulator indicates good charge-balancing performance and high 

accuracy in current control mode. The whole system consumes only 4μW in idle state and 

occupies a chip area less than 1mm2. 
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Chapter 7 Linear-Phase Delay Filter 

 

7.1 Design Background 

This chapter describes the design of a low-power continuous-time linear-phase delay 

filter, which is part of the analog signal processing block of an on-chip neural spike 

classification chip. The designed filter aims to provide wideband large group delay and 

small signal distortion to avoid introducing errors for later signal processing. 

 

7.2 Design of a Linear-Phase All-Pass Transfer Function 

A typical all-pass transfer function is given by: 

𝐻(𝑠) = 𝐻0
𝑃(−𝑠)

𝑃(𝑠)
, 

where P(s) is a polynomial function and H0 is the gain of the filter. The group delay of 

the transfer function is: 

grd[𝐻(𝑠)] = −
𝑑𝜙𝐻(𝑠)

𝑑𝜔
. 

We can easily find that: 

grd[𝐻(𝑠)] = 2 ×
𝑑𝜙𝑃(𝑠)

𝑑𝜔
. 

Therefore, we only need to find the derivative of the phase of polynomial P(s) and then 

the total group delay is simply two times of that value. For a large group delay, generally 

a high-order polynomial function is required. Among the proposed polynomials, an 

equal-ripple function provides the largest delay bandwidth for a given order by uniformly 

introducing small ripples of delay time (<3%) over delay bandwidth. [28] 

To ensure normal functioning of the spike classifier, the required delay is up to 600μs. 

Based on this requirement, a ninth-order equal-ripple polynomial function is chosen to 

construct the filter. The normalized-frequency function of the chosen polynomial is given 

below: [28] 

𝑃𝐸𝑅(𝑠) = (𝑠 + 0.5729)(𝑠
2 + 0.8158𝑠 + 8.5927)(𝑠2 + 1.0355𝑠 + 5.2528)(𝑠2

+ 1.1095𝑠 + 2.5840)(𝑠2 + 1.1380𝑠 + 0.9006). 
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The delay and the constant-delay bandwidth of the normalized-frequency function are 

given below: 

{
𝐷0 = 3.655𝑠
𝜔0 = 2.93𝐻𝑧

. 

The bandwidth-delay product of scaled-frequency function remains the same. Namely, 

we have: 

𝐷𝑠𝜔𝑠 = 𝐷0𝜔0. 

The frequency scaling factor is given by: 

𝑘 =
𝜔𝑠
𝜔0

=
𝐷0
𝐷𝑠
. 

We can see that the scaled transfer function can have larger delay over smaller bandwidth 

(more signal distortion) or smaller delay over larger bandwidth (less signal distortion). 

For this application, we implemented two delay cases: 400μs and 600μs. The 

corresponding delay bandwidth and frequency scaling factor is given below: 

𝑓𝑠 = {
5.68𝑘𝐻𝑧   𝑓𝑜𝑟   𝐷𝑠 = 600𝜇𝑠
8.52𝑘𝐻𝑧   𝑓𝑜𝑟   𝐷𝑠 = 400𝜇𝑠

, 

𝑘 = {
12183   𝑓𝑜𝑟   𝐷𝑠 = 600𝜇𝑠
18275   𝑓𝑜𝑟   𝐷𝑠 = 400𝜇𝑠

. 

Therefore, even the smallest delay bandwidth can still cover the frequency spectrum of 

typical action potential signal. Notice that this is only for the ideal transfer function. The 

implemented transfer function normally has smaller bandwidth due to the circuit 

nonlinearity. 

To scale the frequency, consider the normalized-frequency second-order all-pass function 

shown below as an example: 

𝐻2𝑛𝑑(𝜔) =
−𝜔2 + 𝑗𝑎𝑛𝜔 + 𝑏𝑛
−𝜔2 − 𝑗𝑎𝑛𝜔 + 𝑏𝑛

, 

where an and bn are normalized polynomial coefficients. The corresponding scaled-

frequency function is then given by: 

𝐻2𝑛𝑑(𝜔𝑠) =

−𝜔𝑠
2

𝑘2
+
𝑗𝑎𝑛𝜔𝑠
𝑘

+ 𝑏𝑛

−𝜔𝑠2

𝑘2
−
𝑗𝑎𝑛𝜔𝑠
𝑘

+ 𝑏𝑛

=
−𝜔𝑠

2 + 𝑗𝑎𝑛𝑘𝜔𝑠 + 𝑏𝑛𝑘
2

−𝜔𝑠2 − 𝑗𝑎𝑛𝑘𝜔𝑠 + 𝑏𝑛𝑘2
=
−𝜔2 + 𝑗𝑎𝑠𝜔 + 𝑏𝑠
−𝜔2 − 𝑗𝑎𝑠𝜔 + 𝑏𝑠

. 

Therefore, the scaled polynomial coefficients are given by: 
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{
𝑎𝑠 = 𝑎𝑛𝑘

𝑏𝑠 = 𝑏𝑛𝑘
2. 

Based on this property, we can configure the circuit to change the polynomial 

coefficients. This equivalently changes the delay time of the filter. Detailed 

implementation is explained in Section 7.3. 

 

7.3 Circuit Implementation 

This section describes the circuit implementation of the ninth-order equal-ripple all-pass 

filter (ERAPF). The transfer function of the filter is given by: 

𝐻𝐸𝑅𝐴𝑃𝐹(𝑠) = 𝐻0
𝑃𝐸𝑅(−𝑠)

𝑃𝐸𝑅(𝑠)
= 𝐻0 ×

(−𝑠 + 𝑎1)

(𝑠 + 𝑎1)
×
(𝑠2 − 𝑎2𝑠 + 𝑏2)

(𝑠2 + 𝑎2𝑠 + 𝑏2)
× …×

(𝑠2 − 𝑎5𝑠 + 𝑏5)

(𝑠2 + 𝑎5𝑠 + 𝑏5)
 

= 𝐻0 × 𝐻1(𝑠) × 𝐻2(𝑠) × 𝐻3(𝑠) × 𝐻4(𝑠) × 𝐻5(𝑠), 

where H0 is the DC gain of the filter and PER(s) is the scaled-frequency ninth-order equal-

ripple polynomial function. We can see that H1(s) is a first-order all-pass filter and 

H2~5(s) are second-order all-pass filters. The strategy is thereby to implement them 

separately and cascade all five blocks to form the whole transfer function. 

 

7.3.1 Implementation of a First-Order All-Pass Filter 

The circuit of the first-order all-pass filter is shown in Figure 7.1. 

 

Figure 7.1: Circuit of a first-order all-pass filter. 

For sufficiently large gain provided by the amplifier, the transfer function of the circuit is 

given by: 
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𝐻1(𝑠) =

1
𝑅2𝐶2

− 𝑠

1
𝑅2𝐶2

+ 𝑠
=
(𝑎1 − 𝑠)

(𝑎1 + 𝑠)
. 

 

7.3.2 Implementation of a Second-Order All-Pass Filter 

The second-order all-pass filter is implemented by Delyiannis circuit shown in Figure 

7.2. [29] 

 

Figure 7.2: Circuit of a second-order all-pass filter. 

The transfer function of the circuit is given by: 

𝐻𝑖(𝑠) =
𝐴𝑣

1 + 𝐴𝑣
×

𝑅4
𝑅3 + 𝑅4

 × [
1 + (𝐶1𝑅1 + 𝐶2𝑅1 − 𝐶2𝑅3

𝑅2
𝑅4
) 𝑠 + 𝐶1𝐶2𝑅1𝑅2𝑠

2

1 + (𝐶1𝑅1 + 𝐶2𝑅1 +
𝐶2𝑅2
1 + 𝐴𝑣

) 𝑠 + 𝐶1𝐶2𝑅1𝑅2𝑠2
], 

where Av is the gain of the amplifier. For very large gain, this transfer function is: 

𝐻𝑖(𝑠) ≈
𝑅4

𝑅3 + 𝑅4
 × [

1 + (𝐶1𝑅1 + 𝐶2𝑅1 − 𝐶2𝑅3
𝑅2
𝑅4
) 𝑠 + 𝐶1𝐶2𝑅1𝑅2𝑠

2

1 + (𝐶1𝑅1 + 𝐶2𝑅1)𝑠 + 𝐶1𝐶2𝑅1𝑅2𝑠2
]. 

If we take C1=C2=C, R1=R3 and R2=4×R4, then we have: 

𝐻𝑖(𝑠) =
𝑅4

𝑅3 + 𝑅4
 × [

1 − 2𝑅1𝐶𝑠 + 𝑅1𝑅2𝐶
2𝑠2

1 + 2𝑅1𝐶𝑠 + 𝑅1𝑅2𝐶2𝑠2
] = 𝐴𝑖 ×

(𝑠2 − 𝑎𝑖𝑠 + 𝑏𝑖)

(𝑠2 + 𝑎𝑖𝑠 + 𝑏𝑖)
, 

which is an ideal second-order all-pass function with gain given below: 
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𝐴𝑖 =
𝑅4

𝑅3 + 𝑅4
. 

We can see that this transfer function has a gain of less than 1V/V. After cascading 4 

second-order all-pass filters, the gain of the whole circuit is around 0.2V/V. 

It should be noticed that if the amplifier’s gain is not extremely large, the approximation 

of the transfer function is not accurate. If we consider the finite gain effect and choose 

C1=C2=C, R1=R3 and R2=4×R4, we have: 

𝐻𝑖(𝑠) =
𝐴𝑣

1 + 𝐴𝑣
×

𝑅4
𝑅3 + 𝑅4

 × [
1 − 2𝐶𝑅1𝑠 + 𝑅1𝑅2𝐶

2𝑠2

1 + (2𝐶𝑅1 +
𝐶𝑅2
1 + 𝐴𝑣

) 𝑠 + 𝑅1𝑅2𝐶2𝑠2
]. 

In fact, the term CR2/(1+Av) may be comparable with 2CR1 when the gain is not 

sufficiently large. This additional term leads to a notch response of the filter and the 

notch frequency normally falls into the bandwidth of interest. One way to fix this 

problem without changing R1 and R2 is to increase R3. We can write down the transfer 

function in following form: 

𝐻𝑖(𝑠) = 𝐴𝑖 ×
(𝑠2 − 𝑎𝑖1𝑠 + 𝑏𝑖1)

(𝑠2 + 𝑎𝑖2𝑠 + 𝑏𝑖2)
. 

According to the transfer function derived, bi1 and bi2 are always the same. To obtain an 

all-pass function, we need to equate ai1 and ai2. Namely, we want: 

−(𝐶1𝑅1 + 𝐶2𝑅1 − 𝐶2𝑅3
𝑅2
𝑅4
) = 𝐶1𝑅1 + 𝐶2𝑅1 +

𝐶2𝑅2
1 + 𝐴𝑣

. 

This yields the equation of R3 in terms of the finite gain: 

𝑅3 = 𝑅1 +
𝑅2

4(1 + 𝐴𝑣)
. 

In circuit simulation, we can sweep value of R3 to make the magnitude response flat. 

When ai2 is larger than ai1, the filter tends to have a notch response. When ai2 is smaller 

than ai1, the filter’s amplitude response tends to peak. 

 

7.3.3 Implementation of the ERAPF with Alterable Delay 

Assume that all capacitors used have same capacitance C. From previous circuit analysis, 

we know that the scaled coefficient of first-order all-pass filter is: 

𝑎𝑠 =
1

𝑅2𝐶
= 𝑎𝑛𝑘. 
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The scaled coefficients of second-order all-pass filter are: 

{
 

 𝑎𝑠 =
2

𝑅2𝐶
= 𝑎𝑛𝑘

𝑏𝑠 =
1

𝑅1𝑅2𝐶2
= 𝑏𝑛𝑘

2

. 

Therefore, if R1 and R2 are fixed, we have: 

1

𝑘
∝ 𝐶. 

Notice that the delay of the filter is: 

𝐷𝑒𝑙𝑎𝑦 = 2𝐷𝑠 =
2𝐷0
𝑘

⟹ 𝐷𝑒𝑙𝑎𝑦 ∝ 𝐶. 

This means that we can linearly change the delay by simply changing the capacitance C. 

The implemented ERAPF with alterable delay is shown in Figure 7.3. 

 

Figure 7.3: Circuit of ninth-order ERAPF with alterable delay. 

As shown in the circuit diagram, when all switches are closed, the capacitance C is 4pF 

which corresponds to the 600μs-delay case. When all switches are open, C drops to 

around two thirds of 4pF which corresponds to the 400μs-delay case. Based on the 

capacitance C and considering the finite gain effect, we can calculate R1~4 of each block. 

These resistance values are given in Table 7.1. The amplifier used in each block is a two-

stage amplifier with Miller compensation. 
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Transfer Function R1 (MΩ) R2 (MΩ) R3 (MΩ) R4 (MΩ) 

H1 20.8174 35.7563 N/A N/A 

H2 0.9750 50.3254 1.2149 12.6299 

H3 2.0381 39.2726 2.1401 9.9338 

H4 4.4016 36.9244 4.5730 9.2726 

H5 13.0195 35.9899 13.2399 9.0522 

Table 7.1: R1~4 of implemented filter. 

 

7.4 Cadence Simulation 

The delay and amplitude response of the filter from the pre-layout AC simulation are 

shown in Figure 7.4. We can see that the amplitude response is very flat for both delay 

cases. This means that the filter has small amplitude distortion. The delay bandwidth of 

400μs-delay case and 600μs-delay case are 5kHz and 3.16kHz approximately. These 

values are smaller than the values predicted by the mathematical model of the filter. One 

explanation is that we did not consider the loading effect when we cascaded all five 

blocks. Since the input impedance of each block is not infinite, it can change the transfer 

function of last block. This change of transfer function shrinks the delay bandwidth but 

has small impact on the delay time. For neural signal, most of the frequency components 

are concentrated at the low-frequency region. Therefore, the signal distortion, as shown 

in the transient simulation, is still acceptable. 

 

Figure 7.4: Delay and amplitude response of the filter. 

The filter’s delay function is tested by an amplified 200ms-long real neural signal 

recorded from hippocampus region. [16] The neural signal has peak-to-peak voltage up to 

700mV and common-mode voltage of 700mV. The output of the filter is firstly amplified 

to compensate the gain of the filter and then compared with the ideally delayed neural 

signal to calculate the error introduced by the filter. The error equation is given below: 
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𝐸𝑟𝑟𝑜𝑟(𝑡) =
|𝑉𝑠𝑖𝑔(𝑡 − 𝜏) −

1
𝐻0
× 𝑉𝑜𝑢𝑡(𝑡)|

|𝑉𝑠𝑖𝑔(𝑡 − 𝜏)|
× 100%, 

where τ is the delay time and H0 is the gain of the filter. Figure 7.5 shows a 15ms section 

of the 200ms pre-layout transient simulation. We can see that for both delay cases, the 

delayed signal maintains the shape of original signal well. The 400μs-delay case has 

lower error due to its larger delay bandwidth. 

 

Figure 7.5: Transient simulation of the filter. 

The filter has also been tested at different process corners. The pre-layout simulation 

shows that although the delay time fluctuates, the filter can reliably delay the signal with 

acceptable distortion level. Delay time at each corner is shown in Table 7.2. 

 400μs-Delay Case 600μs-Delay Case 

Corner Delay (μs) Bandwidth (Hz) Delay (μs) Bandwidth (Hz) 

tt 411 5000 613 3160 

ff 466 5000 694 3160 

fff 468 5000 698 3160 

fs 409 5000 612 3160 

sf 413 5000 615 3160 

ss 372 5000 561 4000 

ssf 367 5000 554 4000 

Table 7.2: Simulation of the filter at different process corners. 

The performance of the filter is assessed by the FOM equation proposed by Gosselin et 

al., with a small modification. [30] The equation is shown below: 
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𝐹𝑂𝑀 =
𝑃𝑜𝑤𝑒𝑟 × 𝑉𝐷𝐷
𝑛 × 𝑓 × 𝐷𝑅

, 

where n is the number of poles plus zeros, f is the cutoff frequency of the filter and DR is 

the dynamic range in V/V. The equation of the DR is given below: 

𝐷𝑅 =
𝐼𝑛𝑝𝑢𝑡 𝑅𝑎𝑛𝑔𝑒

𝑅𝑀𝑆 𝐼𝑛𝑝𝑢𝑡 𝑅𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑁𝑜𝑖𝑠𝑒
. 

For this work, the input range is defined as the range of input for which the total 

harmonic distortion (THD) of the output signal is below -40dB. Specifications of the 

implemented filter are summarized in Table 7.3. 

 400μs-Delay Case 600μs-Delay Case 

Power 1.533μW 1.533μW 

Power Supply 1.5V 1.5V 

Order of the Filter 18 18 

Cutoff Frequency 5000Hz 3160Hz 

Input Range (This Work) 800mVpp 800mVpp 

Input Range (Gosselin et al.) N/A 40mVpp 

Input Referred Noise 0.5mVpp 0.6mVpp 

Dynamic Range 566V/V 471V/V 

Delay 411μs 613μs 

FOM (This Work) 4.5×10-14 8.6×10-14 

FOM (Gosselin et al.) N/A 18×10-14 

Table 7.3: Specifications of the filter. 

We can see that the 600μs-delay case, compared with the state-of-the-art design, provides 

the same delay time but with much larger input range. The FOM has also been reduced to 

less than one half of the reported value, meaning a better overall performance. Besides 

the normal delay function, the filter also provides digitally controlled alterable delay 

time, which could be very useful in low-power analog signal processing applications. The 

filter also shows strong immunity to process variation. 
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Chapter 8 Conclusion and Future Works 

 

8.1 Conclusion 

In this work, a closed-loop neurostimulation system that automatically finds the 

minimum stimulation current to evoke an action potential from neurons has been 

proposed. The design and implementation of the system has also been presented. The 

motivation behind this work is to improve the energy efficiency of the neural stimulator 

from the perspective of the biological system. Besides the closed-loop neuromodulation 

system, the thesis has included the implementation of a low-power linear-phase delay 

filter as an additional but separate work. The filter is used to delay the neural signal and is 

part of a neural spike classification chip. All designs are implemented in GlobalFoundries 

180nm silicon-on-insulator (SOI) process. 

The main work is summarized as follows: Chapter 2 presents a general-purpose analog 

front-end (AFE). The AFE has an input-referred noise less than 5μV over a bandwidth of 

3.25Hz ~ 4.65kHz and consumes 14.61μW. The low-power, low-noise and wideband 

feature makes the AFE suitable for recording action potentials from neurons. The AFE 

also provides wide and accurate gain tuning with a linear tuning step, which enables 

accurate control over the signal amplitude. 

Chapter 3 presents a 239nW neural spike detector based on the absolute threshold 

detection (ATD) method. A robust spike detection algorithm is proposed to improve the 

error tolerance of the stimulator. Testing with a real neural signal confirms that the spike 

detector can reliably differentiate action potentials from various noise sources. 

Chapter 4 gives a comprehensive study of the charge-balancing performance of different 

types of neural stimulators and the modeling of passive discharge. Based on this study, a 

charge-balanced monopolar current-regulated stimulator with built-in passive discharge 

function is designed and implemented. The stimulator has a typical current mismatch less 

than 0.1% and a strong immunity to PVT variations. The stimulation current can be 

accurately tuned from 6μA to 90μA with a tuning step of 6μA. In idle state, the stimulator 

consumes 3.626μW. 

Chapter 5 describes the peripheral circuitry of the system, including high-voltage level 

shifters, a 69nW stimulation timing generation module (STGM) and a 251nW 4-bit 

counter. 

Chapter 6 gives the integration of the overall system. Layout and post-layout simulations 

of the system are included. The integrated system accomplishes well the designed 

operation flow and demonstrates excellent charge-balancing performance and accurate 

control over the stimulation current. The whole system consumes 4μW in idle state and 

occupies a chip area less than 1mm2. 
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Chapter 7 presents a low-power continuous-time linear-phase delay filter, which provides 

wideband large group delay, small signal distortion and large dynamic range. The figure 

of merit (FOM) of the filter is less than one half of the FOM of the state-of-the-art design. 

Besides the normal delay function, the filter provides digitally controlled alterable delay time. 

The filter also shows a strong immunity to PVT variations. 

 

8.2 Future Works 

For the closed-loop neurostimulation system, following future works still need to be 

addressed: 

• Integration of the AFE: Although we have a complete design for the AFE, it has 

not been integrated into the system yet. The integration of the AFE will help us 

study the performance of a complete closed-loop system. 

• Study of the Stimulation Artifact: Although the neural signal recording and the 

stimulation happen sequentially in the proposed system, the stimulation artifact 

may still affect the performance of the system. For example, if the system is 

duplicated for large-scale stimulation and each channel does not perform 

stimulation or detection simultaneously, surrounding channels may introduce 

stimulation artifacts to channels that are currently recording. Therefore, it is 

necessary to study possible issues and methods to prevent stimulation artifacts. 

• Discrimination of Spontaneous Action Potentials: Spontaneous action 

potentials deliver erroneous information to the system and make the system 

output wrong results. One way to solve this problem is to make the system run 

multiple complete operations and take the average value of all outputs. 

• AFE with Self-Calibration: The designed AFE has accurate control over the 

signal amplitude. We could leverage this feature to construct an AFE that can 

automatically tune its gain to adapt to the threshold voltage set by the spike 

detector. This reduces the number of calibration steps for the system and makes 

the system more suitable for constructing large-scale stimulation systems. 

For the linear-phase delay filter, the following future work still need to be addressed: 

• Study of the Loading Effect: Compared with the mathematical model, the 

implemented filter has smaller delay bandwidth. One explanation is the loading 

effect of each stage of the filter. If we can use some circuit techniques to 

compensate or reduce this loading effect, the performance of the filter can be 

further improved. 
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