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Abstract. We present a model for simple earth mover robots modifying contin-
uous 2D granular structures and propose a multi-robot planner which can modify
structures according to user-defined goals. The proposed planner decomposes a
long-horizon construction task into subtasks that are easier to solve using opti-
mal transport theory and Wasserstein geodesics. We test the algorithm with 100
randomly generated construction tasks and demonstrate the algorithm with both
single and many robots. The simulations show that the multi-robot algorithm can
achieve 85% construction progress on average even under the presence of action
noise and motion constraints. In addition, the deployment of multiple robots can
reduce the overall traveling distance by 70% compared with the single-robot case,
which is important as motion also affects the structure.

1 Introduction

One of the most celebrated use cases of robotics is to prepare a remote, hostile landscape
for colonization, whether in the Arctic, the deep sea, or space. Government agencies,
planning an imminent return to the moon followed by trips to Mars, are driving inno-
vations in this space, calling for new robot designs capable of using in-situ materials
to prepare landing pads, roads, foundations, and berms [1, 2]. State-of-the-art robots
towards these goals are typically based on advanced actuation and high-speed commu-
nication, and sophisticated sensors [3–7]. However, the extreme conditions of extrater-
restrial terrain conditioning poses high risk of clogged mechanisms, dust-covered or
saturated sensors, and robot entrapment; hence resilience and long-term autonomy is
critical. An interesting alternative is to deploy swarms of simpler, more robust robots
that can continue working even in the presence of lost individuals [8].

In previous work [9], we introduced and tested a conceptual design of such sim-
ple robots. These robots were based on double-tailed single-actuator wave mechanisms
(Fig. 1(a)). The mechanism consists of fixed, mechanical helices surrounded by rect-
angular chains, such that rotation causes a sinusoidal motion, capable of traversing a
number of terrains [10, 11]. Now just by operating the two tails with differing speeds,
we demonstrated the ability of the robot to push, transport, degrade, level, compact,
and dig into granular materials as well as climb over other robots. While these demon-
strations were restricted to simple tethered, 2D manipulation of large granules (packing
peanuts), they were especially exciting because of the robustness of the construction
behaviors, many performed with open-loop control. We further speculated on several
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Fig. 1: The construction function (Eq. 2) is obtained through curve fitting with real data.
(a) A double-tailed SAW robot on granules. (b) Automated surface tracking of a SAW
robot pushing material forward. (c): Fitting the change of surface over time (blue line)
with the construction function (red line). (d): Construction function without noise (red
line) and with noise (blue line).

pathways towards 3D operation [9]. In this paper, we build on this technology by in-
troducing an abstract mathematical model for the robot mechanism and a construction
planner based on Wasserstein geodesics, also aptly known as the earth movers distance.

Over the last few decades, collective robotic construction has emerged as a dis-
tinct scientific field with its own unique challenges, methods, and opportunities [12].
Consequently, related work on planners is numerous and matches the wide range of
goal structures (buildings, dams, roads, rafts, etc.), building material (bricks, cement,
filament, sandbags, sand, etc.), and platform constraints (mobile ground-locked robots,
climbing robots, UAVs, etc.). The closest related work stems from [13], which intro-
duced the concept of navigability constraints, permitting simple robots to add material
to modify an environment guided only by their own ability to overcome discontinuities
and slopes. Later follow-on articles [14, 15], extended upon this work with a variety of
building materials, including foam bricks, sandbags, and rocks. Our work similarly tar-
gets continuous amorphous structures, but we focus on non-additive construction. Due
to the simplicity of our robots, each agent cannot carry or add material from elsewhere,
but has to push material around to form a structure. Therefore a new model is needed
to describe this modification process. Compared to [13], our construction problem has
a broader input (any given initial structure) and a stricter output (a user-defined goal
structure), which adds more variations to the construction task and difficulties in defin-
ing the problem. However, our system requires global sensing and centralized control.
Essentially, we are picturing a construction system with global depth sensors and com-
munication, where the robots are used as untethered, distributed actuators. To address
the challenges mentioned above, we first develop an abstract model to describe the non-
additive modification (Sec. 2). Based on the model we propose a planning algorithm
that utilizes Wasserstein geodesics to decompose a construction problem into subtasks
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that are easier to solve (Sec. 3). We explore the algorithm with a single perfect robot
(Sec. 4) and then we include realistic factors like motion constraints and traveling dis-
tance into consideration (Sec. 5). Finally, we propose a multi-agent planning algorithm
to overcome these issues (Sec. 6). Our proposed method is a first step towards landscape
preparation with simple and robust multi-robot systems. The concept of using Wasser-
stein geodesics for subtask abstraction can also be used to help solve other problems
involving continuous structures such as the manipulation of deformable objects. [16].

2 Abstract Model

2.1 Problem Formulation

The construction problem is formulated as follows. Given initial and user-defined goal
structures, how can we design a robot motion and action strategy such that the shape of
the final structure is as close to the goal structure as possible? The real robot has two
construction modes. In one, one tail is stationary and keeps the robot in place while
the other moves material forward. In the other, locomotion and material manipulation
happens simultaneously. Here, we focus on the former one to separate locomotion and
manipulation. For now, we assume that the robot can freely move without affecting the
structure shape. Real constraints are considered in Sec. 5. We also assume that robots
have global sensing and follows plans from a central controller. The remainder of this
section presents mathematical models of the continuous structure and modifications,
the height function and function operator concepts are inspired by [13].

2.2 Mathematical Model

Model for continuous structures: We model the 2D construction similar to the orig-
inal robot environment [9]. The construction area Q can be any connected, compact,
and finite subset of R1. Here we set it as an area with length L, Q = [−L/2, L/2].
The height function is a continuous, bounded, non-negative function, h : Q → R+.
The graph of h, (x, h(x))x ∈ Q describes a structure. Due to the physical properties
of granular material, the maximum steepness of the structure cannot exceed a constant
K = 0.42, informed by real robot experiments [9]. Therefore, the height of a valid
structure must satisfy:

max |h′(x)| ≤ K (1)

Construction function: The robot action on the structure can be modeled by a class
of real-valued bounded construction functions f : Q → R. The integral of a valid
construction function over Q must be 0 so that the volume of the structure is preserved:∫
Q
f(x) dx = 0. We use the first Gaussian derivative to model a robot pushing material.

Let Qf ⊂ Q denote the area where the action can be taken. Given an action location
ϕ ∈ Qf , and a direction of pushing the material θ ∈ {left, right}, the construction
function of pushing material for 1 second is:

fϕ,θ(x) =
z(θ)a√
2πw2

(x− ϕ)e−
(x−ϕ)2

2w2 , (2)
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where a ̸= 0 and w > 0 control the size of the moved mass, and z(right) = 1, z(left) =
−1. a and w are set to fit the real robot behavior. The fitting process is shown in
Fig. 1(b)-(d). The area where the action is permitted is set to Qf = [−(L/2−5w), (L/2−
5w)], so that fϕ,θ is always a valid construction function (assuming L ≫ 10w). In re-
ality, the robot’s action is always noisy. We add Gaussian noise to the shape parameters
and action position to mimic this effect. The construction function with noise is:

f̂ϕ,θ(x) =
z(θ)â√
2πŵ2

(x− ϕ̂)e−
(x−ϕ̂)2

2ŵ2 , (3)

where â ∼ N (a, a/10), ŵ ∼ N (w,w/10), and ϕ̂ ∼ N (ϕ, 10). These noise parameters
are taken empirically. Even though the noise seems small, the accumulated error effect
becomes significant over many actions.

Model for modification: Let H denote the space of all valid height functions on Q.
Let F denote the space of all valid construction functions. The modification process is
modeled by the modification operator M : H × F → H. Let parentheses (·) denote
the function application to points and brackets [·] denote the operator application to
functions. Given a current structure h and a construction function f , the new structure
after modification is:

M [f, h](x) = h(x) + αf̂(x), (4)

where α ∈ [0, 1] is an attenuation factor that enforces the steepness constraint of the
structure (Eq. 1) and f̂ is the construction function with noise (Eq. 3). In reality, when
the robot keeps digging at the same place and the steepness of the hole exceeds K, the
material around will roll back. In addition, the robot has limited weight and cannot dis-
place material heavier than its own weight. Therefore the robot action has a diminishing
effect when the steepness of the modified structure approaches K, which is captured by
α. Let x∗ = argmax |h′(x) + f̂ ′(x)|. α is given by:

α =


1 if |h′(x∗) + f̂ ′(x∗)| ≤ K
K−h′(x∗)

f̂ ′(x∗)
if h′(x∗) + f̂ ′(x∗) > K

−K−h′(x∗)

f̂ ′(x∗)
if h′(x∗) + f̂ ′(x∗) < −K

(5)

Given an initial structure h0, and a sequence of actions characterized by the position and
direction parameters (ϕ1, θ1), (ϕ2, θ2), (ϕ3, θ3) . . . , the final structure after n actions is:

M [fϕn,θn ,M [fϕn−1,θn−1 , . . .M [fϕ1,θ1 , h0]] = h0(x) +

n∑
i=1

αif̂ϕi,θi(x) (6)

3 Planning Algorithm

Based on Eq. 6, we can reformulate the construction problem as follows. Given an
initial structure h0 and a goal structure h1 which must have the same integral over Q,
how can we find a sequence of actions {fϕi,θi} that can modify h0 into a structure
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that is as close to h1 as possible? In this section, we present a planning algorithm that
can automatically abstract the construction problem into multiple subtasks which are
much easier to solve based on Wasserstein geodesics. In each subtask, the algorithm
generates an intermediate goal structure ht based on the current structure, and then uses
a greedy approach to find an action sequence that can modify the current structure to ht.
The remainder of this section reviews optimal transport theory and Wasserstein distance
and then presents the basic framework of the planning algorithm.

3.1 Optimal Transport and Wasserstein Metric

Optimal transport theory was originally formulated by Monge to study the most efficient
way to transform a distribution of mass to another. [17] In recent years it has been
widely used in statistics, machine learning, and image processing. [18–20] Here we
briefly introduce optimal transport theory and the Wasserstein metric without going into
details of measure theory and Riemannian geometry. Consider two probability density
functions I0 and I1 defined over Ω ⊂ Rn. A transport map T : Rn → Rn tells where
to move the mass from one location to another so that I0 can morph into I1. For a valid
transport map, the amount of mass moved out of an area must be the amount of mass
moved into another area. Therefore the measure-preserving (MP) requirement must be
met: ∫

T−1(A)

I0(x) dx =

∫
A

I1(x) dx. (7)

If T is differentiable and bijective, by applying change of variables, we have:

det(DT−1(x))I0(T
−1(x)) = I1(x), (8)

where det(DT−1(x)) is the Jacobian of T−1. If the cost of moving a unit mass is
measured by a convex distance function d : Rn × Rn → R, then the optimal transport
problem based on Monge formulation is:

M(I0, I1) = inf
T∈MP

∫
Rn

d(x, T (x))I0(x)dx. (9)

The minimizer T ∗ is called the optimal transport map. The 2-Wasserstein distance is
defined as:

W2(I0, I1) =

(
inf

T∈MP

∫
Rn

|x− T (x)|2I0(x)dx
)1/2

. (10)

Let P (Ω) be the set of probability densities supported on Ω, then the metric space
(P (Ω),W2) is referred to as the 2-Wasserstein space. The 2-Wasserstein geodesics
It, t ∈ [0, 1] is the shortest path connecting I0 and I1 in 2-Wasserstein space:

It(x) = det(DT−1
t (x))I0(T

−1
t (x)), Tt(x) = (1− t)x+ tT ∗(x). (11)

Eq. 10 also suggests that the 2-Wasserstein geodesics has the following properties:

W2(I0, It) = tW2(I0, I1). (12)
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In the case of 1D, the optimal transport map, 2-Wasserstein distance, and 2-Wasserstein
geodesics all have closed-form solutions.

T ∗(x) = F−1
1 ◦ F0(x), (13)

W2(I0, I1) =

(∫ 1

0

∣∣F−1
0 (t)− F−1

1 (t)
∣∣2 dt) 1

2

, (14)

It(x) =
I0(T

−1
t (x))

T ′
t (T

−1
t (x))

, Tt(x) = (1− t)x+ tT ∗(x), (15)

where F0 and F1 are cumulative distribution functions of I0 and I1. In future work
where we need to study 3D structures, T ∗ in higher dimensions can be estimated using
numerical methods such as flow minimization, gradient descent, linear programming,
and entropy regularization. [21–24]

3.2 Measure of Distance and Intermediate Structures

We apply the Wasserstein metric in 1D to measure the distance between structures and
generate intermediate structures. The height function h is converted to a probability
distribution function I by dividing by the integral over Q. Consider two arbitrary height
functions ha and hb with the same integral v over Q. Let Q denote the space of real-
valued, bounded functions on Q and let Q+ denote the non-negative subset of Q. Thus
we have H ⊂ Q+ ⊂ Q. Eq. 14 can be used to measure the distance between them.
Let DW2 : H ×H → R be the distance function based on 2-Wasserstein distance. Let
DL2 : Q×Q → R be the distance function based on Euclidean distance.

DW2
(ha, hb) = W2(ha/v, hb/v), (16)

DL2
(ha, hb) =

(∫
Q

|ha(x)− hb(x)|2 dx
) 1

2

. (17)

Compared with DL2 , DW2 captures the geometry of the data and can more accurately
measure the progress towards the goal. This is better illustrated in Fig. 2. However, DL2

is much easier to compute and will be more frequently used to make step-wise decisions
in the planning algorithm. Given the initial structure h0, goal structure h1, and current
structure h, the construction progress is 1−DW2

(h, h1)/DW2
(h0, h1). Notice that by

this definition, the construction progress could be negative when h is even more distant
from h1 than h0. We construct an operator Gt : Q+ × Q+ → Q+ for generating an
intermediate structure at point t between two given structures based on Eq. 15.

Gt[ha, hb](x) =
ha(T

−1
t (x))

T ′
t (T

−1
t (x))

, Tt(x) = (1− t)x+ tF−1
b ◦ Fa(x), (18)

where Fa, Fb are cumulative distribution functions of ha and hb. Notice that T−1
t al-

ways exists since all height functions are non-negative and continuous. The generated
intermediate goal may not be a valid structure. However, it does not affect the planning
since in each subtask the algorithm does not have to reach the exact intermediate goal.
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Fig. 2: (a) Wasserstein geodesics (green solid line) from h0 (blue dotted line) to h1 (red
dotted line). (b) Effect of dW on how Alg. 1 follows the geodesics.

3.3 Planning Algorithm based on Wasserstein Geodesics

The basic planning algorithm is shown in Alg. 1. The algorithm decomposes the con-
struction problem into subtasks, in which it computes the shortest path (geodesics) from
the current to the goal structure and then attempts to move the structure by dW over that
path (lines 3-5). If the distance to the goal is less than dW , the algorithm attempts to
move towards the goal directly. The algorithm then uses a greedy approach to determine
the action sequence that leads to the intermediate goal. Notice that since the prediction
process does not capture the noise, the attenuation factor, and robot constraints, the
execution result (line 13) might be very different from the predicted outcome. dW de-
termines the resolution of decomposition. This effect is illustrated in Fig. 2. Smaller
dW leads to a path closer to the geodesics and thereby less mass movement and fewer
actions. Smaller dW also leads to simpler subtasks which require fewer actions to ac-
complish. Therefore the greedy approach can better predict the action sequence and the
algorithm can more efficiently solve the problem. The trade-off is more computation
and more frequent communication with the centralized controller.

4 Single Robot Execution

In this section, we present the simulation results for Alg. 1 executed by a single robot
without constraints, to show that with an idealized robot, the algorithm can accomplish
almost any construction task within the physical limits of the granular material. For
comparison, we also tested a naive greedy algorithm (Alg. 2) which does not have
subtask abstraction.

4.1 Random Structure Generation

We generated random structures based on a mixed Gaussian model to form a set of con-
struction tasks to test the algorithm. A construction task is defined by a tuple (Q, h0, h1)
where Q is the construction area and h0, h1 are valid height functions of initial and goal
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Algorithm 1: Planning algorithm based on Wasserstein geodesics.
Input: construction area Q, initial height function h0, goal height function h1, desired

distance to move in every subtask dW .
1 Set current structure h← h0

2 repeat
3 Get distance to the goal (Eq: 16): W ← DW2(h, h1)
4 Set the point on the geodesics: t← min{1, dW/W}
5 Get intermediate goal (Eq: 18): ht ← Gt[h, h1]
6 A← 0, S ← ∅
7 repeat
8 Find optimal action: ϕ∗, θ∗ ← argminϕ,θ DL2(h+A+ fϕ,θ, ht)

9 Get distance (Eq: 17) to the intermediate goal: L← DL2(h+A+ fϕ∗,θ∗ , ht)
10 A← A+ fϕ∗,θ∗

11 Add optimal action (ϕ∗, θ∗) to S

12 until L stops decreasing;
13 Execute the action sequence S (Eq. 6) and update h.
14 until W stops decreasing;

Algorithm 2: Naive greedy algorithm.
Input: construction area Q, initial height function h0, goal height function h1.

1 Set current structure h← h0

2 repeat
3 Get distance to the goal (Eq: 17): L← DL2(h, h1)
4 Find optimal action: ϕ∗, θ∗ ← argminϕ,θ DL2(h+ fϕ,θ, h1)

5 Execute the action based on the discrete dynamics (Eq. 6) and update h.
6 until L stops decreasing;

structures defined on Q. The random height function is given by:

h(x) =

m∑
i=1

aie
− (x−bi)

2

2c2
i , (19)

where m ∈ Z, ai ∈ R, bi ∈ R+, ci ∈ R are random variables drawn from uniform
distributions. We generated 100 construction tasks on a fixed Q that is 5m (13 times
the robot length) wide. 20 randomly selected tasks are shown in Fig. 3. These tasks do
not have practical purposes, but are used to test the cross-task algorithm performance.

4.2 Simulation Results

The simulation results are shown in Fig. 4. The average progress achieved by Alg. 1
and Alg. 2 are 94 ± 3% and 8 ± 12% respectively. This shows that greedily following
locally optimal actions often cannot solve the full construction problem. The average
number of steps to complete 95% of a structure is 2000 ± 1185 with each step taking
1 second. Since the construction area is only 5m wide, the large number of actions
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Fig. 3: Example of 20 tasks from the 100 randomly generated construction tasks. Each
task comprises an initial structure h0 (blue line) and a goal structure h1 (orange line).
Notice that h0 and h1 have the same volume of material.

shows the long-horizon nature of the construction problem, which again strengthens
the importance of subtask abstraction. It also suggests that other methods with poor
sampling efficiency like reinforcement learning may be inefficient.

5 Towards Real Deployment

In the following sections, we start taking the constraints of real robots and the cost of
navigation into account. For a real robot, there is a maximum steepness KR = 0.3
it can climb before becoming stuck [9] (it can still descend a slope with steepness
< −KR). After imposing this constraint, the robot will not travel to any location outside
the reachable area. Given the x-coordinate of robot location xR, the reachable area
QR ⊂ Q is the largest closed interval [a, b] that includes xR and satisfies following
conditions:

h′(x) ≤ KR for b ≥ x > xR,

h′(x) ≥ −KR for a ≤ x < xR,

∂+h(xR) ≤ KR or ∂−h(xR) ≥ −KR,

(20)

where ∂+h(xR) and ∂−h(xR) are right and left derivative at robot location. If the robot
receives a command to go to a location outside QR, it will simply ignore it. Notice that
after a robot travels to a location in QR, it may not be able to go back to its previous
location. This constraint makes the construction process much more unpredictable as
new actions can unintentionally change the accessible area for the robot.

The cost of traversal is the second effect we need to consider. To overcome finite
battery capacity we need to minimize the traveling distance while accomplishing the
construction task. Although following the Wasserstein geodesics minimizes the mass
moving distance, it is unrelated to the traveling distance of the agent who executes it.
A good example is the construction task shown in Fig. 2(a), where we want to split one
mound in the middle into two mounds on each side. If we use a single robot to follow
the geodesics, it will travel back and forth between two mounds, resulting in wasted
energy. This problem can be addressed by introducing multiple (simple and therefore
inexpensive) robots to execute the algorithm presented in Sec. 6. Another reason why
we need to minimize the traveling distance is robot motion will change the structure in
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Fig. 4: Simulation results of solving 100 random construction tasks. Each task is simu-
lated 5 times. (a) Construction progress. (b) Total traveling distance of all robots.

reality. The degree of change depends on many factors including the robot’s speed, the
structure’s shape, and the granules’ material properties. For example, the change would
be subtle if the robot travels on a flat surface at low speed. Modeling this change is left
for future work. Here, we focus on minimizing the robot’s traveling distance.

6 Multi-Robot Execution

In this section, we show that by adding more robots, the system can overcome the
robot’s motion constraints to achieve higher construction progress and reduce the trav-
eling distance. We propose the multi-robot planning algorithm based on Wasserstein
geodesics (Alg. 3). The proposed algorithm comprises a flattening phase (lines 2-8), and
then a construction phase (lines 10-27). Given robot position xR, let QT ⊂ Q denote
the traversable area of a robot over which it can freely move back and forth. QT is the
largest closed interval that includes xR and satisfies: ∀x ∈ QT , |h′(x)| ≤ KR. We also
define the untraversable area QU ⊂ Q as any area that satisfies: ∀x ∈ QU , |h′(x)| >
KR. In the flattening phase, each robot randomly moves around its traversable area. If
the local steepness exceeds threshold KTH , the robot takes an action to flatten the struc-
ture and then moves to the next location. By repeating this process, each robot can po-
tentially expand its traversable area, ultimately making the entire structure traversable.
In the construction phase, the algorithm applies Alg. 1 to find the action sequence to
accomplish each subtask. For each action, the algorithm assigns the closest agent who
can reach the action location to execute it or skips this action if such a robot does not
exist. With multiple robots on site, this strategy increases the chance of completing the
structure under constraints and lowers the traveling distance.

6.1 Simulation Results

The simulation results are shown in Fig. 4. We first compare the single-robot execution
with and without the motion constraint. Fig. 4(a) shows that after adding the constraint,
the average progress drops to 69±27%. Notice that for all tasks, the maximum steepness
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Algorithm 3: Multi-Robot planning algorithm based on Wasserstein
geodesics. A robot swarm with N robots is identified by {1, . . . , N}. The x-
coordinates of their positions are denoted by X = [x1, . . . , xN ]. The reachable
area and traversable area of robot i are denoted by QR,i and QT,i respectively.

Input: construction area Q, initial height function h0, goal height function h1, desired
distance to move in every subtask dW , number of robots N . Steepness threshold
for taking an action to flatten the structure KTH .

1 Set current structure h← h0, and deploy robots uniformly over untraversable area QU

2 repeat
3 for each robot i do
4 Choose a random location ϕ̃ ∈ QT,i that satisfies: |h′(ϕ̃)| > KTH

5 if h′(ϕ̃) > KTH then θ̃ ← left else θ̃ ← right;
6 Execute action ϕ̃, θ̃ (Eq. 6) and update h and X

7 end for
8 until ∀i, QT,i = Q;
9 Robots spread out to uniformly cover the entire structure

10 repeat
11 Get distance to the goal (Eq: 16): W ← DW2(h, h1)
12 Set the point on the geodesics: t← min{1, dW/W}
13 Get intermediate goal (Eq: 18): ht ← Gt[h, h1]
14 A← 0, S ← ∅
15 repeat
16 Find optimal action: ϕ∗, θ∗ ← argminϕ,θ DL2(h+A+ fϕ,θ, ht)

17 Get distance (Eq: 17) to the intermediate goal: L← DL2(h+A+ fϕ∗,θ∗ , ht)
18 A← A+ fϕ∗,θ∗

19 Add optimal action (ϕ∗, θ∗) to S

20 until L stops decreasing;
21 for each action ϕj , θj in S do
22 if ϕj is reachable by any robot then
23 Choose execution robot i s.t. ϕj ∈ QR,i and |xi − ϕj | is minimized
24 Execute the action (Eq. 6) and update h and X

25 end if
26 end for
27 until W stops decreasing;

of the initial or goal structure is close to the structure constraint K, which exceeds the
maximum steepness the robot can climb KR. We then compare single-robot execution
to multi-robot execution with the motion constraint. Fig. 4(a) shows that as more robots
are added, Alg. 3 achieves higher progress. The highest average progress is 85 ± 13%
for ten robots, a significant increase from the single-robot case. To study the effect of
the number of robots on the traveling distance, we execute Alg. 3 with motion constraint
and analyze 25 tasks with construction progress > 90%. Fig. 4(b) shows as more robots
are added, the total traveling distance of all robots decreases. The average traveling
distance drops from 795 ± 540m for one robot to 237 ± 156m for ten robots, a 70%
decrease. We also found that the initial traveling distance for flattening the structure
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Fig. 5: Simulation results of solving task #98. Each setting of dW is simulated 100
times. W is the distance between the initial structure and goal structure. (a) Construc-
tion progress vs dW . (b) Number of actions vs dW .

is only up to 8% of the total traveling distance, which is almost negligible. Under the
influence of the motion constraint, the effect of dW is amplified as the algorithm has a
much higher chance of solving simpler subtasks. We study this effect by solving task
#98 which has the lowest progress even being built by multiple robots. The distance
between the initial and goal structure of task #98 is W = 15.39. We solve this task with
10 robots and dW = 0.2W ∼ W . When dW = W , the algorithm always attempts to
solve the task in one shot. Fig. 5 shows as dW increases, the progress drops, and more
actions are taken. This illustrates the importance of subtask abstraction when solving
the long-horizon construction problem.

7 Discussion

In this paper, we developed an abstract model for modifying 2D granular structures
based on data from a simple robot presented in [9]. Based on this model, we proposed a
planning algorithm that utilizes Wasserstein geodesics to solve the construction problem
of modifying a given structure to a user-defined new structure. A robot can follow this
plan with a simple greedy approach. To reduce the robot’s traveling distance and address
the robot’s motion constraint, we extended this work to a multi-robot algorithm. This
strategy allows the system to build structures that are infeasible for a single robot.

There are many avenues to further our work. For the model, the effect of robot
motion on the structure can be included. For algorithms, more advanced methods like
reinforcement learning may be used to solve subtasks. Many subtasks are similar and
the learned policy for one subtask may be transferable to solve other subtasks. Agents
could also be more intelligent and cooperate to overcome the motion constraint. Finally,
we are interested in extension to 3D and decentralized operation. For 3D construction,
the main challenges are finding suitable construction functions and computing the opti-
mal transport map and Wasserstein geodesics. To decentralize the system, one potential
solution is to let each agent compute Wasserstein geodesics locally.
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