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Abstract— Multi-robot systems have been shown to build
large-scale, user-specified structures wusing distributed,
environmentally-mediated coordination in simulation. Little
attention, however, has been devoted to error propagation and
mitigation. In this paper, we introduce a detailed simulation
of TERMES, a prototypical construction system, in which
robots have realistic error profiles. We use this simulator
and 32 randomly generated 250-brick blueprints to show
that action errors can have significant long-term effects. We
study the spatio-temporal error distribution and introduce
and characterize the efficacy of a simple decay-based error
correction mechanism. Although inefficient, this type of error
correction is promising because it can be performed by robots
with the same limited sensory capabilities as those who place
bricks. To limit the impact on the construction rate, we also
examine decay mechanisms informed by spatial and temporal
error distributions. The incorporation of decay in our building
process increases the probability of successful completion by
~4, at the expense of ~1/4 decrease in construction rate.

I. INTRODUCTION

In collective robotic construction (CRC), many robots
work together to build structures at a scale far larger than the
size of the individuals [1]. Such systems have shown promis-
ing potential for applications ranging from autonomous con-
struction of human habitats [2], [3], [4], to assembly of
access structures in inaccessible terrains [S] and retaining
walls in flood zones [6], [7]. Borrowing inspiration from
construction in natural super-organisms, swarms of these
robots may leverage the physical construction process to
prompt distributed spatio-temporal coordination eliminating
the need for global sensing and communication [8].

The demands on CRC hardware, however, are significant
and consequently reliability is challenging [1]. Robots must
be able to maneuver over the structure and manipulate,
carry, and reason about where to place material. Either
designers rely on flying robots which cannot operate below
the structure surface envelope, or on robots which are able
to climb on the structure while carrying material. Because
the latter are effectively building structures that shield them-
selves from off-board sensors and central coordinators, many
systems instead utilize more affordable and robust robots
that have only local sensing and communication. Although
robot swarms are typically showcased as robust to errors [9],
collective construction robots actively manipulate a shared
environment and when errors happen, these can physically
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Fig. 1: (a) Sketch of the TERMES CRC system. (b) Example
where knowledge beyond the local view (dashed line), is
needed to identify a wrong placement or a stalled robot.

obstruct further progress. Even heavily engineered robots
will make mistakes, especially given the lengthy sequence
of actions required to successfully complete large structures.
The problem is exacerbated in systems that target particular
blueprints and rely purely on additive construction as is
common in current CRC [2], [10], [11], [12].

Few CRC research papers disclose error statistics [2],
[13], [14], [4], although many describe feedback measures
to instantaneously fix detected errors [15], [16], [14], [4].
Recent work also shows how to evaluate structure stability
upon completion [17], and preventative techniques such as
predictive local checks and planners that take error statistics
into account [18]. However, we lack fundamental techniques
that generalize across CRC system, to autonomously detect
and correct errors accumulated in the structure. A typical
colloquial solution is to introduce a separate class of “cor-
rection robots”. However, such robots are subject to the same
constraints as the assembly robots, may also make mistakes,
and when limited to local sensing, will not be able to detect
long-range errors (Fig. 1, Movie S1).

In this article, we focus on the impact of fatal errors
stemming from wrongfully placed bricks or permanently
stalled robots on the structure. While many factors may lead
to these errors, e.g. hardware malfunction and environmental
disturbance, we focus on the subset related to robot motion
and perception, as we have found that these are the most
common cause of failure to complete construction.

To address these errors, we explore an indirect correction
mechanism inspired by decay, which plays an important role
to nest construction in natural swarms [19]. This means that
depositions are no longer permanent and that the construction
environment is no longer static. We start with uninformed



decay patterns similar to evaporation, and then introduce
two variations: a spatially biased decay pattern informed by
particularly problematic parts of the structure, and a time-
evolving decay pattern with a rate informed by the con-
struction progress. Note that structure decay can be enforced
by environmental forces, human intervention, or specialized
robots. Importantly, such specialized robots would not target
erroneous depositions explicitly and therefore would not
require global knowledge, long-range sensing, or reliability
beyond what the normal construction robots are capable of.

Specifically, we explore decay-based error correction in
the context of a high-fidelity simulation of the TERMES
CRC system [2], [16], where minimalistic, locally informed
robots follow a stochastic plan to assemble user-specified,
3D structures (Fig. 1, Sec. II-III). We explore the detailed
error characteristics of this system (Sec. IV) and use those
to inform decay patterns for improved progress (Sec. V-
Sec. VII). Although we use the TERMES system to ground
our findings, the concept of decay-based error correction
translates across platforms, and may prove key to secure long
term autonomy in CRC systems.

II. TERMES OVERVIEW

For completeness, we briefly highlight the relevant features
of the TERMES system as a case study next.

Physical Platform: TERMES consists of robots and pat-
terned bricks which are wide enough for the robot to climb
onto. Their actions include: move forward one brick, turn
90°, pick up and place bricks. The robots can climb at most
one step up or down, and place bricks in front of themselves
at the same level. They cannot place bricks in between two
other bricks (gaps). The robots can perceive and avoid nearby
robots, and can register progress and inclines as they move
over the bricks, as well as the relative height of neighboring
locations (i.e. the difference between flat structures, steps,
unclimbable cliffs, and the ground).

Map Compiler: The construction process involves a pre-
compilation step that takes a blueprint as an input, and
compiles a “policy” given to deployed robots (Fig. 2 #1).
The policy is a 2D map showing the number of bricks to
be placed in every location, as well as uni-directional robot
traffic directions between locations. Neighboring locations
that lead to and from a location are termed the parents and
children of it, respectively. The map further marks a start
location. Robots enter the structure, pick up a brick, and then
follow the traffic directions until they reach the end, after
which they circumnavigate the structure perimeter until they
relocate the start. If they find a valid deposition site while
on the structure, they deposit their brick. The path robots
follow through the structure is non-deterministic, therefore
the structure may grow in many ways. In later versions of
the TERMES compiler, it was shown that assigning biased
transition probabilities between locations can increase the
construction progress by orders of magnitude [20], and that
policies which optimize the number of parallel paths enhance
both construction time and probability of success when
robots are prone to errors [18].

Placement Ruleset: To avoid obstructing progress by
others, brick placements adhere to a ruleset which is designed
around robots’ inability to: 1) sense the state of locations
beyond their immediate neighbors, 2) traverse cliffs, and 3)
fill gaps. The ruleset [2] states that a brick can be placed
iff: 1) The location height is less than the blueprint-specified
height; 2) All parents have a height greater than the location,
or have reached their desired height; 3) All children have a
height equal to the location, or their desired heights differ
from the desired height of the location by more than 1.
When (non-erroneous) robots correctly follow the policy and
ruleset, they can provably complete a compiled structure,
despite the lack of global knowledge.

Predictive Local Checks (PLC): By leveraging PLC,
robots use local knowledge to correct many navigation errors
immediately[18]. To do this, the robot senses the height of
neighboring locations before and after an action (Table I),
comparing what is expected to what is sensed. These checks
can have three outcomes: 1) If the local neighborhood has
distinct features, robots may use these to infer its pose after
a faulty action, correct its belief and carry on. 2) If there
are duplicate features, robot can still register that an error
happened, but cannot infer the new pose. 3) If there are no
features (uniform height), errors cannot be detected.

Desired action Outcome Probability [%]
Move forward on | by 1 brick 99.800
level ground (FL) | by O brick (FL¢,0B) 0.100
by 2 bricks (F'Le2B) 0.100
by 1 brick 99.900
Climb up (CU) by 0 brick (CUe,0B) 0.067
by 2 bricks (CUe,25) 0.033
by 1 brick 99.99
Climb down (CD) | by 0 brick (C'D. oB) 0.001
by 2 bricks (C'D.,2B) 0.009
by 90° 98.600
Turn by 90° (T) by 0° (Te,00) 0.700
by 180° (Te,180°) 0.700

TABLE I: Error statistics used in the simulator.

ITII. TERMES SIMULATION

To support the study of errors and decay-based error cor-
rection, we extended upon a TERMES simulator introduced
in [18]. In every step of our simulation, each agent takes
an error-prone action (Table I). To make simulation run-time
practical, we lower the number of errors, and consequently
construction times, by a factor of 10 compared to the real
system statistics [2]. Simulation extensions particular to
this paper include 1) upgrading from a single- to a multi-
robot simulator which enables us to reproduce collisions
and congestion phenomena observed in the real system;
2) more realistic robot actions failures and failure profiles;
and 3) robots which can perceive (in accordance with the
hardware [2]) whether they are on or off the structure,
and whether a neighboring location holds a traversable or
untraversable cliff to the structure perimeter.

The simulator includes four types of action failures. For-
ward motions, such as move forward on level ground (F'L)
and climbing up/down (C'U/C D) can fail, either because the



robot moves too far (2 bricks) or stays in place (0 bricks).
Turning motions (7") can fail such that the robot either turns
too far (180°) or stays in place (0°). For each action failure,
we describe the outcome in the subscript and use “e” to
denote an error, e.g. a failure to climb up is noted as CU, op.

We modified the original robot controllers to integrate
PLC, such that when errors occur, robots take the following
actions: 1) If, based on local features, robots can infer their
new pose, they update their belief and carry on. 2) If the
local features are symmetric, robots may recognize that an
error occurred, but not which one. In this case, to prevent
making lasting impacts on the structure, they will not place
a brick, and if they find themselves by the perimeter at a
height of 1, they will leave the structure.

Note that we focus explicitly on errors that directly affect
the construction progress, we do not include: 1) Errors that
happen during structure circumnavigation; 2) robots that fall
off the side of the structure, since they do not effect others;
or 3) docking errors — presumably these will immediately
half the system because the entryway is blocked.

In the following, we leverage this simulator to reason
about the effectiveness of decay-based error corrections. As
such, we include the effect of decay, but not the actual
robots that could inflict it. We do, however, ensure that such
correction robots would require no sensing or communication
abilities beyond those of the original construction robots.
We focus our evaluation on 32 10x10 randomly generated
250-brick structures (Fig. 2). We use parallel policies with
transition probabilities optimized according to [18]. For these
structures, we found that 3 robots make the fastest progress
without causing congestion, and use this number for all trials.
Unless otherwise noted, all results are assimilated from 100
simulations of each structure. We terminate simulations that
run longer than 20,000 actions/robot.

Finally, to help us study the impact of errors on the
construction process, we introduce the following metrics:

Construction progress shows the state of construction.
We compute this metric by the number of correctly-placed
bricks divided by the total number of bricks in the blueprint;
100% marks successful completion.

Construction rate is the frequency of brick placement.
The construction rate over a period of time is equal to the
number of correctly-placed bricks divided by the number of
robot actions. As progress increases, robots need to travel a
longer distance to find valid depositions, and therefore the
rate decreases as the structure near completion.

Probability of success is computed as the ratio of trials
that achieve 100% construction progress.

IV. ERROR ANALYSIS

Action failures do not necessarily hinder construction [18],
but may simply cause robots to leave the structure without
finding a valid deposition location, or cause bricks to be
assembled in the wrong order, but (by luck) avoid creating
cliffs and gaps. We refer to errors that completely stall
construction as critical errors and distinguish between two
types. Wrong placements (WP) occur when a robot places
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Fig. 2: 32 randomly generated blueprints with 10x 10 loca-
tions and a total of 250 bricks. Blueprint #1 is enlarged to
show an example of the policy traffic directions.
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a brick at an incorrect location on the structure or when
the placement violates the ruleset. Robot stalling (RS) errors
occur when robots find themselves in a dead-end on the
structure effectively blocking all future passage, either be-
cause of undetected action failures or WP resulting in gaps or
cliffs. Fig. 3 shows an example of three robots attempting to
construct blueprint #1. We can see that 6 action errors occur
before one that leads to a critical WP which eventually stalls
all progress. To emphasize the importance of error correction
mechanisms, consider all the randomly generated blueprints
shown in Fig. 2. With the somewhat optimistic error statistics
reported in Table I, the probability of success is only 114+7%.

To study the construction error distribution, we imple-
mented a “restorative” correction mechanism, which logs
and fixes critical errors as they happen. At each time step,
this mechanism checks each robot and if any robot has
been in the idle state for more than 36 steps consecutively,
the robot will be removed from the structure and a RS
error will be registered. After each brick placement, the
mechanism will check if it meets the placement rulesetr. If
the ruleset is violated, the brick will be removed and a WP
will be registered. This mechanism, only implemented as
an analysis tool, provides insights on the spatio-temporal
distribution of critical errors. From simulation, we found
that critical errors are rare. On average we found 3.39+3.06
RS errors and 2.97£2.78 WP per 10,000 robot actions (it
takes 5,02942,086 actions/robot to complete a structure on
average). Since WP can lead to RS errors, it makes sense
that the latter occurs more frequently than the former.

Fig. 4 shows the spatial distribution of critical errors
in blueprint #1 with the restorative correction mechanism.
Interestingly, this plot indicates that WP and especially RS
errors occur at higher rate in particular locations. Similar
“error hot-spots” were observed across most structures; Fig. 5
shows the error frequency of the top 5 hot-spots in each
blueprint. These amount to only 5% of all locations, but
contain 68%=+12% of all RS errors and 23+5% of all WP.
A preliminary investigation did not reveal obvious spatial
correlation between locations with higher frequency of RS
errors and WP. Future work, however, may reveal that error
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Fig. 4: Spatial distribution of critical errors in blueprint #1.
(a) RS errors. (b) WP errors.

rates are higher in locations with 1) higher visiting rates
due to the policy or the structure itself funneling robots
through these locations, 2) locations with many parents
or children, and/or 3) locations that lack unique structural
features rendering PLC useless. If this is the case, future
work may lower the number of critical errors simply by
changing the generated policies.

Fig. 6 shows the temporal distribution of critical errors
in all 32 blueprints. The number of critical RS errors
increases, first linearly, and then steeply as the structure
nears completion. The linear increase is likely due to the
fact that robots have to travel further over the structure with
every deposition, increasing the risk that errors occur. The
steep increase when the structure is near completion is likely
due to congestion near the exit, where errors can have a
more significant effect. Conversely, the number of critical
WP decreases, almost linearly, with increasing construction
progress, presumably because placing a brick wrong near the
end of the construction progress is less likely to block the
path of future robots.

V. UNINFORMED DECAY

Inspired by addition and dissipation in natural processes,
we next investigate the use of structure decay to deal with
errors. Explained theoretically, our reasoning is as follows.
The construction process can be modeled as a finite state
Markov process, with a large (combinatorial) number of
partial assembly states. The problem with errors is that
they create deadlock and produce incorrect absorbing states
from which the system cannot escape. Adding even a small
active decay rate completely mitigates this problem since
the absorbing error states are no longer absorbing and the
system has some (small) probability of reaching the only
absorbing state, which is the final, correct, assembly. There
are two critical observations that affect this model: 1) How
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Fig. 5: Top 5 “error hot-spots” in all 32 blueprints. The error
frequency is computed as the number of critical errors per
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Fig. 6: Temporal distribution of critical errors in all 32
blueprints. (a) RS errors. (b) WP errors.

effective this approach is in practice depends on the details of
transition rates and the Markov structure, so that tuning the
decay rate relative to the construction progress is essential
for practical performance. 2) Without global knowledge, we
have no way to determine when the Markov process reaches
the final, correct, assembly and when active decay should
cease. At best, we can approximate this by the number of
bricks taken from the docking station as explained later.

Next, we explore what happens when we apply uniform,
low-probability brick and robot decay to every location at
every time step. The outcome of attempted brick decay
is determined by a decay ruleset which depends on local
information only, and ensures that no additional critical
errors are caused. As shown in Alg. 1, line 5 ensures that
the decay does not cause a gap; line 6 ensures that the
decay does not cause a cliff, but also allows decay when
the cliff is part of the final blueprint; line 7 ensures that it is
physically possible for the robots to add back the removed
bricks. Because in some cases, the RS errors can only be
corrected by removing the stalled robots, we also include
robot decay. One can imagine such decay done by a robot
leading others off the structure, or simply pushing them over
the structure side.

We tried robot decay and brick decay separately and to-
gether with blueprint #1. The average maximum construction
progresses without decay, with robot decay, with brick decay,
and with decay of both were 664+28%, 69£29%, 78+24%,
and 90+18% respectively. This shows that robot decay and
brick decay mechanisms complement each other.

For a blueprint with m locations, the decay process can
be modeled as m independent Bernoulli processes, in which
there is a probability p. of a decay attempt at each time
step. The expected number of decay attempts at each time
is then mp.. However, since only certain locations satisfy
the decay ruleset, the expected number of successful decay
attempts is less than mp.. We define the ratio of successful
decay attempts to total attempts as the decay success rate.
We also define the ratio of the number of efficacious attempts
that remove critical errors to the total number of successful



attempts as decay efficacy. The most important factor in
this error correction mechanism is p.. High p. enables
more frequent decay attempts which increase the chance of
correcting critical errors, but can slow down construction.
Low p. makes the decay process less destructive, but may
result in impractically long correction times.

We tested the uninformed decay mechanism on the 32
10x10 blueprints. As the average number of critical WP
and RS errors is similar, we used the same p. for both brick
and robot decay across all blueprints. For each blueprint,
we set pe to r./m, where m = 100 locations and r,
is the average construction rate extracted from simulations
with the restorative correction mechanism. This construction
rate represents an upper bound of the construction rate of
a successful construction process when errors are present
(since in reality it takes time for the system to correct errors).
With this p., the expected number of decay attempts per time
step is equal to the construction rate, but the actual decay is
considerably less due to the decay ruleset.

The chosen p. is not necessarily the optimal value. Due
to the stochasticity of the construction processes and the
large amount of possible ways to assemble the structure,
analytically finding a decay rate that is globally optimal is
difficult. Another option is to find a good range for p. using
parameter sweeps, however, this fine-tuning process can be
very time-consuming and is not the focus of this paper.

Fig. 7 shows an example of blueprint #1 being built,
with the decay-based correction mechanism. We can see that
errors occur frequently, however, at ~1,700 actions/robot
a critical RS error causes the construction process to stall
and progress starts decreasing due to decay. After ~5,000
actions/robot the decay corrects all previous critical errors,
effectively restoring the construction rate until the structure
reaches ~87% of its final size. As the construction progress
nears 100%, it becomes harder for the robots to locate the
last deposition sites and the construction rate drops. Fig. 7(b)
shows the long term behavior of the system. As expected,
after the construction progress peaks, the system enters a
balanced state where the construction and decay rate are

Algorithm 1: Decay ruleset. h; is the number of
bricks in location %; j are neighbors of ¢; and k are
children of ¢. [ are the set of ¢ neighbors which are
opposite to each other (North-South or East-West).

1 for each time step t do

2 for each location i do
3 if Outcome of Bernoulli trial with decay
probability p. == decay then

4 if there is no robot

5 and for at least one location © € l: h; > hg
6 and for all j: |h; — (hs —1)| <2

7 and for all k: |hy — (h; —1)| = 0 then
8 | remove top brick: h; = h; — 1

9 end

10 end

11 end
12 end

roughly equal. This indicates the necessity to lower the decay
rate as the construction progress increases (Sec. VII).

In Fig. 8 we compare the maximum construction progress
achieved without decay and with uninformed decay for
each blueprint. We can see that by introducing a simple
uninformed decay mechanism, the construction progress
generally improves. On average, the median increases from
594+16% to 95+10%. T-tests of all blueprints showed statis-
tical significance (5% significance level). The probability of
success increases from 11+7% to 49+£19%. The expense of
this simple decay-based error correction is a decrease in con-
struction rate (Fig. 8), which occurs across all blueprints. The
median of the construction rate (up to the point of maximum
progress) decreases from 0.048+0.007 to 0.0264-0.009.

VI. INFORMED DECAY

As discussed in Sec. IV, most critical errors occur in a
few locations. Next, we explore the effect of biasing the
decay rate for both bricks and robots according to the spatial
distribution of critical errors. Each location 7 now has specific
decay probability p. ; equal to the critical error frequency of
location 7 times the construction rate r.. Notice that the bias
does not change the expected number of decay attempts, but
can change the resulted decay success rate.

Compared with the uninformed decay, the informed decay
achieves similar increase in maximum construction progress
and probability of success (Fig. 8)). The medians of the
maximum construction progress and the probability of suc-
cess are 96+5% and 44+9%, respectively. T-tests between
informed decay and no decay showed that all blueprints
have statistical significance (5% significance level). No-
ticeably, the median of the construction rate (up to the
point of maximum progress) is improved from 0.026+0.009
to 0.037£0.010. T-tests between informed decay and un-
informed decay showed that 87.5% of blueprints have
statistically significant difference (5% significance level).
However, the medians of the decay efficacy for WP and
RS errors dropped from 0.036+0.016 and 0.382+0.119 to
0.0124+0.009 and 0.154+0.055. We hypothesize, as before,
that this is due to the fact that error hot-spots are biased
towards locations that experience high flux. Therefore, even
though our decay is less effective, it works on locations
that are refilled more often. In other words, this method
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improves the probability of success and would require more
’decay robots’, but also enable faster construction progress
as compared to uninformed decay. Note that tuning the decay
rate may affect this outcome.

VII. TIME-EVOLVING DECAY

In this section, we explore the effect of adjusting the decay
rate throughout the construction process to account for the
fact that the number of WP decrease and the construction
rate drops as the structure near completion. One way to do

Algorithm 2: Update of decay rate in time-evolving
decay. N is the number of bricks taken from the
docking station. C' is the estimated construction
progress. R is the set decay rate. R, is the estimated
brick removal rate. f, and f, are functions of the
construction progress. n is the total number of bricks
in the blueprint. S is the initial decay rate.

1 for each time step t do
2 Retrieve N® from the docking station.
3| 0W =W - S RO )/n

4 R((;) = Bfa(C")

s | RY=RYfCY)

6 end
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this without enforcing global sensing is to estimate the con-
struction progress based on the number of bricks taken from
the docking station. To perform the time-evolving decay, we
use the unbiased decay pattern seen in the uninformed decay.
The decay rate for both bricks and robots start from the same
decay rate used in uninformed decay. However, for robots the
decay rate will stay constant and for bricks the decay rate
will change over time.

The time-evolving decay algorithm is shown in Alg. 2.
There are two key tasks: 1) estimating the construction
progress (line 3) and setting the decay rate (line 4). The
construction progress is estimated as the number of bricks in
the structure divided by the number of bricks in the blueprint.
The former is simply the number of added bricks minus
the number of removed bricks. The number of added bricks
can be retrieved from the docking station. The number of
removed bricks is estimated by integrating the brick removal
rate over time. In discrete time, it is computed as the sum
of past brick removal rates. The brick removal rate is a
function of the construction progress and the decay rate. We
use historical data from the uninformed decay to predict the
brick removal rate. This is done by fitting a linear model
for the brick removal rate vs construction progress (Fig. 9
(a)). We then scale this linear model by 1/p., where p, is
the decay rate used in the uninformed decay, to obtain the
function f,. (Fig. 9 (c)). We can then use f,. to predict the
brick removal rate given the current construction progress
and decay rate (line 5).



Given the estimated construction progress, we use function
fa to adjust the decay rate for all blueprints (Fig. 9 (b)).
The reasoning behind applying f, is as follows: 1) For the
early stage of the construction (construction progress below
20%), the relatively high initial decay rate is used because
critical errors in early stage often have higher impact. 2) For
the intermediate stage (progress between 20% and 75%),
the decay rate is slowly decreased since number of WP
is decreasing. 3) For the final stage (progress above 75%),
decay rate remains low to maintain the correction function
at a very low cost. An example of how the system adjusts
the decay rate over time is given in Fig. 10.

Compared with other decay mechanisms, the time-
evolving decay achieves similar increase in maximum con-
struction progress and the probability of success (Fig. 8).
The medians of the maximum construction progress and the
probability of success are 94+10% and 48+18%, respec-
tively. T-tests between time-evolving decay and no decay
showed that all blueprints have statistical significance (5%
significance level). Compared with the uninformed decay,
the time-evolving decay results in a similar decrease in
construction rate. The median of the construction rate (up to
the point of maximum progress) is 0.026+£0.010. However,
the median of the decay efficacy improves by 55%, from
0.03640.016 to 0.056+0.020. The median of the number of
bricks removed also decreases by 58%, from 48+13 bricks
to 20£3 bricks. In other words, the time-evolving decay
improves the overall probability of success and would require
fewer ’decay robots’ at the cost of a slower construction
progress, because the cumulative decay does not keep up
with the system error frequency. Again, parameters such as
[ and f, could be tuned to improve this performance. Future
work may also reveal whether combining informed decay and
time-evolving decay would further improve the system.

VIII. CONCLUSION

In natural construction processes, the structure state is
never static, but rather an emergent outcome of additive
and dissipative processes. This paper introduced a similar
decay mechanism to correct errors that have high impact
on the construction progress and can be commonly seen in
most CRC systems, with the distinct benefit that the robots
executing the error correction do not need global knowledge
or long-range sensing. We found that although decay will
slow down the construction rate, we can use both spatially
and temporally informed decay mechanisms to lower this
effect. Critically, instead of methods relying on accurate
detection and correction of errors which can be computa-
tionally expensive and subject to errors by itself, the work in
this paper demonstrates an alternative method that relies on
randomness and local state information. The effectiveness of
our proposed methods, shown through extensive simulations,
shows that for CRC systems that primarily rely on additive
manufacturing by real (i.e. error-prone) locally-aware agents,
adding a low-frequency decay process will not hinder the
construction progress in the long run, but rather increase
the chance of successfully completing the structure. We also

found exciting directions for future work related both to the
optimal decay rate and the spatial correlation of errors to
locations on the structure.
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